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The Goal
•Establish sensible risk measure for probabilistic systems,
•define related decision and optimization problems,
•derive their theoretical complexity bound, and
• implement practical verification / synthesis procedures to
•obtain optimal, risk averse controllers for safety-critical systems.

Motivation – Controlling a power plant

•Risk assessment / aversion imperative to safety-critical systems
•We want both good average performance and little risk of failures
•Maximizing expectation not good enough
•Outages may occur with little probability ⇒ little impact on expectation
•High risk, high reward behaviour incentivized
•Completely avoiding bad behaviour (worst-case) neither
•Any reasonable plant model has some probability of failure
•Only “safe” strategy: Don’t produce any power
•Other typical objectives in verification also ill-suited
•Variance: Does not distinguish between “good” and “bad” deviations
•Value-at-Risk: “Seductive, but dangerous” – sensitive to perturbations
•Thus: Need a measure of risk suitable for a prob. context

The Conditional Value-at-Risk

•Established approach in other fields (OR / Finance)
•A.k.a.: Expected tail loss, expected shortfall, average value-at-risk

CVaR
Let X be a random variable and p ∈ (0, 1). Then

VaRp(X) := sup{r ∈ R | P[X ≤ r] ≤ p}
Let v = VaRp(X) and p′ = P[X < v].

CVaRp(X) := 1
p

p′ · E[X | X < v] + (p− p′) · v
,

•VaRp(X) (the Value-at-Risk): “What is a reasonable bad case?”
•CVaRp(X): “What happens in the average bad case?”
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Some properties of CVaR

• Interpolation between worst-case (p→0) and expectation (p→1)
•Robust to changes in X and p caused by, e.g., modelling errors
•Coherent risk measure (established term in finance)

Our Contributions(1)

• Introduce CVaR both generally and in the context of MDP
•Define various related decision problems
•Derive theoretical (LP-based) decision procedures and tight
complexity bounds

Markov Decision Processes (MDP)

•Standard Model for single actor in random environment
•Comprises: States, Actions, Transition Probabilities, and Rewards
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The Objectives

•Weighted reachability: Obtain first visited non-zero reward.
Example: Prioritized goals.
•Mean payoff: Reward obtained “on average” per step.
Example: Average energy production.

The Decision Problems
Given
MDP M, dimensions d ∈ N+, reward function ~r : S → Qd,
reward interpretation rew : Run → Q, thresholds ~e,~v,~c ∈ Qd,
and probabilities ~p, ~q ∈ [0, 1)d,

is there a strategy s.t.
E[rewi] ≥ ei, VaRpi

(rewi) ≥ vi, and CVaRqi
(rewi) ≥ ci ∀i?

Results

•Single dim. (d = 1): Everything in P; simple opt. strategies
•Weighted reach.: NP-complete (in d); simple strategies
•Mean-payoff: NP-hard, EXPSPACE (in d); complex strategies
Conjecture: NP-complete

Overall: Synthesizing risk averse controllers tractable for MDP

Future Work

•Extend to richer systems, e.g., 2-player stochastic games, and
more objectives, e.g., bounded-horizon / discounted properties
•Practical implementation and (approximative) optimization
•On-the-fly reformulation
•Close complexity gap for mean-payoff
•Application and interpretation in real-life scenarios
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