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The Goal

e Establish sensible risk measure for probabilistic systems,
e define related decision and optimization problems,

o derive their theoretical complexity bound, and

e implement practical verification / synthesis procedures to

e obtain optimal, risk averse controllers for safety-critical systems.

Motivation — Controlling a power plant

o Risk assessment / aversion imperative to safety-critical systems

e We want both good average performance and little risk of failures

e Maximizing expectation not good enough
e Outages may occur with little probability = little impact on expectation
e High risk, high reward behaviour incentivized
o Completely avoiding bad behaviour (worst-case) neither
e Any reasonable plant model has some probability of failure
e Only “safe” strategy: Don't produce any power

e Other typical objectives in verification also ill-suited

e Variance: Does not distinguish between “good” and “bad” deviations
¢ Value-at-Risk: “Seductive, but dangerous” — sensitive to perturbations

e Thus: Need a measure of risk suitable for a prob. context

The Conditional Value-at-Risk

o Established approach in other fields (OR / Finance)

e A k.a.: Expected tail loss, expected shortfall, average value-at-risk

Let X be a random variable and p € (0,1). Then
VaR,)(X) =sup{r e R | P X <r| <p}

Let v = VaR,(X) and p' = P|X < v].
EX[X <v]+(p—p)-v)

o VaR,(X) (the Value-at-Risk): “What is a reasonable bad case?”
o CVaR,(X): “What happens in the average bad case?”

) value

Some properties of CVaR

o Interpolation between worst-case (p—0) and expectation (p— 1)
® Robust to changes in X and p caused by, e.g., modelling errors

o Coherent risk measure (established term in finance)

Our Contributions(!)

e Introduce CVaR both generally and in the context of MDP
® Define various related decision problems

o Derive theoretical (LP-based) decision procedures and tight
complexity bounds

Markov Decision Processes (MDP)

e Standard Model for single actor in random environment

e Comprises: States, Actions, ~and
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The Objectives

e Weighted reachability: Obtain first visited non-zero reward.
Example: Prioritized goals.

e Mean payoff: Reward obtained “on average” per step.
Example: Average energy production.

The Decision Problems

Given
MDP M., dimensions d € N, reward function 7 :

and probabilities p, ¢ € [0, 1),
is there a strategy s.t.
Clrew;| > e;, VaR, (rew;) > v;, and CVaR,, (rew;) > ¢; Vi?

Results

o Single dim. (d = 1): Everything in P; simple opt. strategies
o Weighted reach.: NP-complete (in d); simple strategies
» Mean-payoff: NP-hard, EXPSPACE (in d); complex strategies

Conjecture: NP-complete

Overall: Synthesizing risk averse controllers tractable for MDP

Future Work

e Extend to richer systems, e.g., 2-player stochastic games, and
more objectives, e.g., bounded-horizon / discounted properties

e Practical implementation and (approximative) optimization
® On-the-fly reformulation
e Close complexity gap for mean-payoff

e Application and interpretation in real-life scenarios
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