Stopping Criteria for Value Iteration on Stochastic Games with Quantitative Objectives

Jan Kretinsky, Tobias Meggendorfer, Maximilian Weininger

Talk in one slide

- Probabilistic systems: Best algorithm (usually) is Value Iteration (VI)
- But: Requires a stopping criterion
 For Stochastic Games (SG) with most infinite-horizon, quantitative objectives there is none!

 This paper: Uniform solution for large class of quantitative objectives (including total reward, mean payoff, ...)

Talk in one slide

- Probabilistic systems: Best algorithm (usually) is Value Iteration (VI)
- But: Requires a stopping criterion for correctness
 For Stochastic Games (SG) with most infinite-horizon, quantitative
 objectives there is none!

1-player SG: separate papers giving stopping criteria for each objective [BCC+14, HM14, BKL+17, ACD+17].

 This paper: Uniform solution for large class of quantitative objectives (including total reward, mean payoff, ...)

Talk in one slide

- Probabilistic systems: Best algorithm (usually) is Value Iteration (VI)
- But: Requires a stopping criterion for correctness
 For Stochastic Games (SG) with most infinite-horizon, quantitative
 objectives there is none!

1-player SG: separate papers giving stopping criteria for each objective [BCC+14, HM14, BKL+17, ACD+17].

This paper: Uniform solution for large class of quantitative objectives

(including total reward, mean payoff, ...)

Unifies all previous ones and is more broadly applicable.

Stochastic Games

Stochastic Games

Iteration	L(s)	L(t)
0	0	0
1		
2		
•••		

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)
0	0	0
1		
2		

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)
0	0	0
1	0	
2		

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)
0	0	0
1	0	
2		

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)
0	0	0
1	0	1/3
2		

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)
0	0	0
1	0	1/3
2	1/3	

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)
0	0	0
1	0	1/3
2	1/3	4/9

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)
0	0	0
1	0	1/3
2	1/3	4/9

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)	U(s)	U(t)
0	0	0	1	1
1	0	1/3		
2	1/3	4/9		

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)	U(s)	U(t)
0	0	0	1	1
1	0	1/3	1	
2	1/3	4/9		

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)	U(s)	U(t)
0	0	0	1	1
1	0	1/3	1	1
2	1/3	4/9		

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)	U(s)	U(t)
0	0	0	1	1
1	0	1/3	1	1
2	1/3	4/9	1	1

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)	U(s)	U(t)
0	0	0	1	1
1	0	1/3	1	1
2	1/3	4/9	1	1

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)	U(s)	U(t)
0	0	0	1	1
1	0	1/3	1	2/3
2	1/3	4/9	2/3	5/9

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)	L(u)
0	0	0	1
1			
2			

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)	L(u)
0	0	0	1
1			1
2			1

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)	L(u)
0	0	0	1
1	0		1
2			1

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)	L(u)
0	0	0	1
1	0	0	1
2			1

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)	L(u)
0	0	0	1
1	0	0	1
2	0	0	1

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)	L(u)
0	0	0	1
1	0	0	1
2	0	0	1

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)	L(u)
0	0	0	1
1	0	1/3	1
2	1/3	4/9	1

$$x_i(s) = \mathbf{opt}_a \ x_{i-1}(s, a)$$

Iteration	L(s)	L(t)	L(u)
0	0	0	1
1	0	1/3	1
2	1/3	4/9	1

Reachability:

stay=0

Safety:

stay=1

Reachability:

stay=0

max(stay,exit) = exit

Safety:

stay=1

Reachability:

```
stay=0
```

max(stay,exit) = exit

Safety:

```
stay=1
```

min(stay,exit) = exit

Reachability:

stay=0

max(stay,exit) = exit

min(stay,exit) = 0

Safety:

stay=1

max(stay,exit) = 1

min(stay,exit) = exit

 Idea: If opponent thinks staying here is good, what happens if we really do stay?

- Idea: If opponent thinks staying here is good, what happens if we really do stay?
- Thus: Fix opponent's strategy and analyse remaining cycles.

- Idea: If opponent thinks staying here is good, what happens if we really do stay?
- Thus: Fix opponent's strategy and analyse remaining cycles

- Idea: If opponent thinks staying here is good, what happens if we really do stay?
- Thus: Fix opponent's strategy and analyse remaining cycles

SOUND

COMPLETE

- Idea: If opponent thinks staying here is good, what happens if we really do stay?
- Thus: Fix opponent's strategy and analyse remaining cycles

SOUND

COMPLETE

OBJECTIVE-INDEPENDENT

Conclusion

- Given: Stochastic Games with quantitative objectives
 (including reachability, safety, mean payoff, expected total reward, ...),
- Goal: Solving them quickly and with precision-guarantees
- Approach: Value Iteration with our new stopping criterion

Idea: Inform the algorithm about the consequences of staying forever:

Should I stay or should I go now?

Unifies previous work [BCC+14, HM14, BKL+17, ACD+17, KKKW18, PTHH20] in an elegant, objective-independent way