
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY MUNICH

Master’s Thesis in Informatics

Solving the quantitative Reachability
Problem on Markov Decision

Processes using Learning Algorithms

Tobias Meggendorfer

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY MUNICH

Master’s Thesis in Informatics

Solving the quantitative Reachability
Problem on Markov Decision Processes

using Learning Algorithms

Lösen des quantitativen
Erreichbarkeitsproblems auf Markov

Entscheidungsprozessen mittels
Learning-Algorithmen

Author: Tobias Meggendorfer
Supervisor: Prof. Dr. Jan Křetínský
Advisor: Prof. Dr. Jan Křetínský
Submission Date: 15.08.2020

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Ergolding, 12.08.2020 Tobias Meggendorfer

Abstract

In this work, we present a general framework for applying machine-learning algorithms
to the verification of Markov decision processes (MDPs), based on the ideas of [Brá+14].
The primary goal of the techniques presented in [Brá+14] is to improve performance by
avoiding an exhaustive exploration of the state space and instead rely on guidance by
heuristics. This approach is significantly extended in this work. Several details of [Brá+14]
are refined and errors are fixed.

The presented framework focuses on probabilistic reachability, which is a core property
for verification, and is illustrated through two distinct instantiations. The first assumes
that full knowledge of the MDP is available, in particular precise transition probabilities.
It performs a heuristic-driven partial exploration of the model, yielding precise lower
and upper bounds on the required probability. The second tackles the case where we
may only sample the MDP without knowing the exact transition dynamics. Here, we
obtain probabilistic guarantees, again in terms of both the lower and upper bounds, which
provides efficient stopping criteria for the approximation. In particular, the latter is an
extension of statistical model-checking (SMC) for unbounded properties in MDPs. In
contrast with other related approaches, we do not restrict our attention to time-bounded
(finite-horizon) or discounted properties, nor assume any particular structural properties
of the MDP.

iii

Contents

Abstract iii

1 Introduction 1
1.1 Related Work . 4
1.2 Differences to the Published Article . 5
1.3 Contributions and Structure . 6

2 Preliminaries 7
2.1 Markov Systems . 7
2.2 Reachability . 11
2.3 Probabilistic Learning Algorithms . 12

3 Complete Information – MDP without End Components 16
3.1 The Ideas of Value Iteration . 16
3.2 The No-EC BRTDP Algorithm . 17
3.3 Proof of Correctness . 17

4 Complete Information – General Case 22
4.1 Collapsing End Components . 23
4.2 The General BRTDP Algorithm . 28
4.3 Proof of Correctness . 29
4.4 Relation to Interval Iteration . 31

5 Limited Information – MDP without End Components 32
5.1 Definition of Limited Information . 32
5.2 The No-EC DQL Algorithm . 33
5.3 Proof of Correctness . 36

6 Limited Information – General Case 46
6.1 Collapsing End Components with Limited Information 46
6.2 The General DQL Algorithm . 48
6.3 Proof of Correctness . 50

7 Experimental Evaluation 62
7.1 Results . 62

8 Conclusion and Future Work 65

A Auxiliary Statements 66

Bibliography 73

iv

Contents

List of Figures 90

List of Tables 91

v

1 Introduction

Markov decision processes (MDP) [How60; FV96; Put94] are a well established formalism
for modelling, analysis and optimization of probabilistic systems with non-determinism,
with a large range of application domains [BK08; KNP11]. For example, MDPs are used
as models for concurrent probabilistic systems [CY95] or probabilistic systems operating
in open environments [Seg96]. See [Whi85; Whi88; Whi93] for further applications.

In essence, MDP comprise three major parts, namely states, actions, and probabilities.
Intuitively, the system evolves as follows: In a particular state, there is a set of actions
to choose from. This corresponds to the non-determinism of the system. After choosing
an action, the system then transitions into the next state according to the probability
distribution associated with that action. For example, we may use MDP to represent a
robot moving around in a 2D world (sometimes called ‘gridworld’). The states then are
(bounded, integer) coordinates, representing the current position of the robot. In each
state the robot can choose to move in one of the four cardinal directions or carry out some
task depending on the current location. To illustrate the inherent randomness, consider a
‘move east’ action. Choosing this action may move the robot to the next position east of
the current one, but it might also be the case that, with some probability, a navigation
component of the robot fails and we instead end up in a state north of our current position.
In general, the goal is to optimize a given objective by choosing optimal actions. For
example, we may want to control the robot such that it reaches an interesting research
site with maximal probability. We additionally may be interested in minimizing time or
power consumption and avoiding dangerous terrain on our way to the site.

The former example describes one of the simplest, yet very important objectives, namely
reachability. The reachability problem consists of an MDP together with a set of designated
target stats. The task is to compute the maximal probability with which the system can
reach this set of states. Reachability is of particular interest since in the infinite setting
many other objectives, e.g., LTL or long-run average reward can be reduced to variants
of reachability. A variety of approaches has been established to solve this problem. In
theory, linear programming [CY90; For+11] is the most suitable approach, as it provides
exact answers (rational numbers with no representation imprecision) in polynomial time.
See [Bar+08] for an application. Unfortunately, LP turns out to be quite inefficient in
practice for classical reachability. For systems with more than a few thousand states,
linear programming is not very usable, see, e.g., [For+11; Ash+17]. As an alternative,
one can apply dynamic programming. Value iteration (VI) [Bel57] is the most prominent
variant and is the default method in the probabilistic model checkers PRISM [KNP11] and
Storm [Deh+17], even though it only provides an approximate solution, converging in the
limit. In contrast, strategy iteration (SI) [How60; Put94; KM17] yields precise answers,
but is also used to a lesser extent due to scalability issues. See for example [Ber17] for an

1

1 Introduction

overview of both methods.
Despite value iteration scaling much better than linear programming, systems with

more than a few million states remain out of reach, not only because of time-outs, but
also memory-outs. Several approaches have been devised to deal with such large state
spaces. Compositional techniques aim to first analyse parts of the system separately and
combine the sub-results to obtain an overall result, e.g., [Cai+10; DH13; HKK13; BKW14;
CCD15; BKW18]. Then, there are abstraction approaches which try to merge states with
equivalent or sufficiently similar behaviour w.r.t. the objective in question, e.g., [DAr+02;
HWZ08; Hah+10; Kat+10; Hah+10]. Reduction approaches try to eliminate states from
the system and restrict computation to a sub-system through structural properties, e.g.,
[BGC04; BDG06; Cie+08; Dı́a+12; FHM18; Bøn+19]. Moreover, as similar approach,
restricting the analysis to a part of the state space is also considered, e.g., asynchronous
VI in probabilistic planning [MLG05]. There, only a certain subset of states is considered
for analysis, leading to speed ups in orders of magnitude. Another approach is symbolic
computation, where the model and value functions are compactly represented using BDD
[Bry86] and MTBDD [Bah+97; FMY97]. See [BKH99; KNP04; ZSF12; Wim+10; BBR14;
Kle+16] for further details and applications. Finally, statistical model checking (SMC)
[YS02; Hér+04] is also applicable. The general idea of SMC is to repeatedly sample the
system in order to obtain strong statistical guarantees. Thus, SMC approaches can (at
most) be probably approximately correct (PAC), i.e. yield an answer close to the true
value with high probability, but there always is a small chance for a significant error. See
[Cha+13; SLL09] for a survey on simulation-based algorithms in MDP and [Roo+17] for
an application of SMC to a complex real world problem. This weaker guarantee often
comes with a tremendous speed-ups and space savings: Several SMC algorithms have
sub-linear or even constant space requirements, often called model-free algorithms. By
itself, SMC algorithms are restricted to systems without non-determinism, e.g., Markov
chains [You05; SVA05b]. A number of approaches tackling the issue of non-determinism
have been presented (see related work for extensive details). However, these methods
deal with non-determinism by either resolving it uniformly at random or sample several
schedulers, both of which can lead to surprising results in certain scenarios [Boh+14].
Note that both approaches can only give a statistical estimate of a lower bound of the
true achievable maximal reachability.

Surprisingly, until a few years ago, even standard value iteration as applied in popular
model checkers only yielded such lower bounds, without any sound stopping criterion.
In [HM14; Brá+14], an error bound was discovered independently. This bound follows
from under- and (newly obtained) over-approximations converging to the true value,
yielding a straightforward stopping criterion—iterate until upper and lower bound are
close enough. Subsequent works included this stopping criterion in model checkers [Bai+17]
and developed further sound value iteration approaches [QK18].

These error bounds not only yield a sound stopping criterion, but also enabled hybrid
approaches incorporating methods where even convergence is not guaranteed. Value
iteration iteratively approximates the value of all states simultaneously, requiring that
all states are known. However, the above mentioned asynchronous VI evaluates states at

2

1 Introduction

Algorithm 1 High-level overview of the structure of our algorithms.
Input: MDP M, target states T , precision ε.
Output: Values (l, u) which are ε-optimal.

1: while difference between upper and lower bound in initial state larger than ε do
2: Obtain a set of states to update by, e.g., sampling a path.
3: for each state and action in this set do
4: if this state is a target state then
5: set its bounds to 1,
6: else
7: update action bounds based on the weighted average of its successors.
8: Detect end components in relevant area of the system.
9: return lower and upper bound of the initial state.

different paces, potentially omitting a whole set of states some completely. Consequently,
convergence is unclear and even its rate is unknown and hard to analyze. Yet, we are
able to combine both of these ideas, inspired by bounded real-time dynamic programming
(BRTDP) [MLG05], to obtain a correct and efficient algorithm, based on asynchronous VI.
The ideas developed here have successfully been extended to, e.g., settings with long-run
average reward [Ash+17], continuous time [Ash+18], or stochastic games (MDP with an
adversary) in [Kel+18]. In a further step, [KM19] uses this approach to approximate a
subset of states necessary for any analysis up to a given precision.

Note that all the above methods (with the exception of SMC) rely on an exact form-
alization of the system being available. In particular they require that the transition
probabilities are known precisely. We call this situation the white box or complete inform-
ation setting. This is a common, valid assumption when verifying, e.g., formally defined
protocols involving randomization, but not so much when working with real-world systems
comprising difficult dynamics, where the effects of an action often can be approximated at
most. As such, these systems can be treated as a black box, which accept a next action to
take as input and output the subsequent state, sampled from the underlying, unknown
distribution associated with the state and action.

The SMC methods mentioned above still are applicable here, however they do not give
any guarantees on the maximal achievable performance and instead only yield a (statistical)
lower bound. Based on the ideas of delayed Q-learning (DQL) [Str+06] (which also only
yields lower bounds) we present a PAC model-free algorithm, yielding statistical upper
and lower bounds on the maximal reachability. This approach also has been extended to
stochastic games in [AKW19], however that approach is model-based.

We mention that many algorithms working with MDP often make assumptions about
the structure of the model. For example, it is sometimes required that the model is
‘strongly connected’ or free of end components [De 97] (except trivial ones). In contrast,
our techniques are applicable to arbitrary MDP. For each of the two approaches, we first
show how MDP with only trivial end components are handled. Then, we augment them
with an on-the-fly detection of end components, extending the method to arbitrary MDP.
Technically, we need to identify such end components in order to ensure convergence of
the computed upper bounds.

3

1 Introduction

To provide the reader with a preliminary overview of our approach, we present a high-
level pseudo-code in Algorithm 1. As already mentioned, the fundamental idea is to
compute lower and upper bounds on the true probability of reaching the target in each
state. Essentially, we want to iteratively update these bounds in a converging and correct
manner. In the complete information setting, this can be achieved by directly computing
the weighted average of the successor bounds. For the limited information setting, we
instead aggregate many successor samples. This yields a good approximation of this
weighted average with high probability. As mentioned above, we also need to take care of
end components. Given complete information, we again can directly solve this problem by
adapting exiting graph analysis algorithms. However, with limited information we again
need to employ statistical methods. In essence, if we remain inside a particular region
of the system for a long enough time, there is a high probability that this region is an
end component. This overall process then is repeated until the computed bounds in the
initial state are close enough. The exact details of how the set of states to be updated
is obtained are abstracted in the complete information setting and we only require some
basic properties. We aimed for a sampling-based approach which is guided by the currently
computed bounds, however a lot more ideas could be employed here. In contrast, the
limited information setting requires a particular kind of sampling approach in order to
ensure correctness of, e.g., the end-component detection. We highlight these differences in
the respective chapters.

1.1 Related Work

In related fields such as planning and artificial intelligence, many learning-based and
heuristic-driven approaches for MDP have been proposed. In the complete information
setting, RTDP [BBS95] and BRTDP [MLG05] use very similar approaches, but have no
stopping criterion or do not converge in general, respectively. [PGT03] uses upper and
lower bounds in the setting of partially observable MDP (POMDP). Many other algorithms
rely on certain assumptions to ensure convergence, for example by including a discount
factor [KMN02] or restricting to the Stochastic Shortest Path (SSP) problems, whereas
we deal with arbitrary MDP without discounting. This is addressed by an approach
called FRET [Kol+11], but this only yields a lower bound. Others similarly only provide
convergence in the limit [Boz+19; Jon+15], which is usually satisfactory for applications
to planning / robotics, where the systems have intractably large or even uncountable state
spaces. We are not aware of any attempts at generally applicable methods in the context
of probabilistic verification prior to [Brá+14]. An earlier, related paper is [AL09], where
heuristic methods are applied to MDP, but for generating counterexamples.

In [HM14], the authors independently discovered a stopping criterion for value iteration
on general MDP. The idea behind this criterion is very similar to the upper and lower
bounds in this work, but they construct and analyse the whole system. The idea of
‘interval iteration’, spawned by these two papers, is further developed in [Bai+17; HM18].

As explained, our algorithm based on delayed Q-learning [Str+06] yields PAC results,
similar to many approaches from statistical model checking [YS02; Hér+04; SVA04].

4

1 Introduction

SMC is an active area of research with extensive tool support [JLS12; BHH12; Boy+13;
Bul+12; Dav+11b; You05; SVA05b] and a lot of subtle pitfalls [KCC05]. In contrast to our
work, most algorithms focus on time-bounded or discounted properties, e.g., step-bounded
reachability, rather than truly unbounded properties. Several approaches try to bridge
this gap by transforming unbounded properties into testing of bounded properties, for
example [YCZ10; He+10; RP09; SVA05a]. However, these approaches target models
without nondeterminism and as such are not applicable to MDP. As a slight extension,
[Bog+11] considers MDP with spurious nondeterminism, i.e. the way the nondeterminism
is resolved does not influence the property of interest.

Adapting SMC techniques to models with nondeterminism such as MDP is an important
topic, with several recent papers. One approach is to give nondeterminism a probabilistic
interpretation, e.g., resolving it uniformly, as is done in PRISM for MDP [KNP11] and
Uppaal SMC for timed automata [Dav+11b; Dav+11a; Lar13]. A second approach,
taken for example by recent versions of the modes tool [HH14; DHS18; Bud+18], is to
repeatedly sample schedulers, using for example lightweight scheduler sampling (LSS)
[LST14; DAr+15], and then estimate the performance of these controllers using existing
SMC methods. Uppaal Stratego [Dav+15] synthesizes a ‘good’ scheduler and uses it for
subsequent SMC analysis. All of the above methods only yield a lower bound on the true
reachability and the quality of this bound is highly dependent on the model. Others aim
to indeed quantify over all strategies and approximate the true maximal value, for example
[LP15; Hen+12]. The work in those papers deals with the setting of discounted or bounded
properties, respectively. In [Hen+12], candidates for optimal schedulers are generated and
gradually improved, which does not give upper bounds on the convergence. The nearly
simultaneously published [FT14] essentially tackles the same problem. In contrast to our
work, their approach is model-based, i.e. the transition probabilities are learned, and is
not guided by a heuristic, requiring to learn the whole transition matrix.

Another issue of statistical methods are the analysis of rare events. This is, of course,
very relevant for SMC approaches in general. They can be addressed using for example
importance sampling [JLS12; He+10] or importance splitting [JLS13; BDH17]. We take a
rather conservative approach towards rare events and delegate more sophisticated handling
of this issue to future work. Note that in particular our BRTDP approach can be combined
very easily with advanced techniques due to its template style.

1.2 Differences to the Published Article

Compared to the article [Brá+14], we provide the following changes.

• A complete rewrite, only retaining parts of the proof strategies.

• The related work is updated with recent advances, in particular work based on the
original paper [Brá+14].

• The BRTDP approach and related proofs are extended significantly to a generic
template, allowing for a variety of implementations of the sampling methods.

5

1 Introduction

• Both variants of the DQL algorithm have been simplified by restructuring and a
reduction of variables.

• Several technical issues of the original paper are fixed. Firstly, the proofs in the
appendix proved properties of slightly different algorithms, only to conclude with a
brief argument that the presented algorithms are not too different from the algorithms
proven correct. Some proofs were only given implicitly or assumed to be common
knowledge, in particular treatment of collapsed end components etc. Moreover,
several small mistakes have been corrected.

• Lemma 16 of the original paper both has a flawed proof and an erroneous statement,
which is now fixed: Firstly, the Algorithm as presented potentially never follows
an ε optimal strategy, as exemplified in Example 1. Secondly, the proof applies
the multiplicative Chernoff bound to variables Xi, which indicate whether the
algorithm performed a particular action during a time interval. To apply this
bound, the variables would need to be independent, but the Xi are highly dependent.
Interestingly, a similar, but different error already is present in [Str+06] (on which
the proofs in [Brá+14] are based), where the authors apply the Hoeffding bound to
dependent variables in the proof of their Theorem 1.

1.3 Contributions and Structure

In Chapter 2 we set up notation and introduce some known results. We then present our
contributions as follows.

• We introduce an extensible framework for efficient reachability on ‘complete inform-
ation’ MDP without end components in Chapter 3 and extend it to arbitrary MDP
in Chapter 4.

• We introduce a model-free PAC learning algorithm for reachability on ‘limited
information’ MDP without end components in Chapter 5 and extend it to arbitrary
MDP in Chapter 6.

We present an experimental evaluation of our approach in Chapter 7. Finally, we conclude
in Chapter 8.

6

2 Preliminaries

As usual, N and R refers to the (positive) natural numbers and real numbers, respectively.
Given two real numbers a, b ∈ R with a ≤ b, [a, b] ⊆ R denotes the set of all real numbers
between a and b inclusively. For a set S, S denotes its complement, while S? and Sω refers
to the set of finite and infinite sequences comprising elements of S, respectively.

We assume familiarity with basic notions of probability theory, e.g., probability spaces
and probability measures. A probability distribution over a countable set X is a mapping
d : X → [0, 1], such that

∑
x∈X d(x) = 1. Its support is denoted by supp(d) = {x ∈ X |

d(x) > 0}. D(X) denotes the set of all probability distributions on X. Some event happens
almost surely (a.s.) if it happens with probability 1. For readability, we omit precise
treatment of probability measures on uncountable sets and instead direct the reader to
appropriate literature.

2.1 Markov Systems

Markov decision processes (MDPs) are a widely used formalism to capture both non-
determinism (for, e.g., control, concurrency) and probability. First, we introduce Markov
chains (MCs), which are purely stochastic and can be seen as a special case of MDP.

Definition 1. A Markov chain (MC) is a tuple M = (S, δ), where

• S is a set of states, and

• δ : S → D(S) is a transition function that for each state s yields a probability
distribution over successor states.

Note that we do not require the set of states of a Markov chain to be finite. This is
mainly due to technical reasons, which become apparent later.

Next, we define MDP, which essentially extend Markov chains with non-determinism.

Definition 2. A Markov decision process (MDP) is a tuple M = (S, Act, Av, ∆), where

• S is a finite set of states,

• Act is a finite set of actions,

• Av : S → 2Act \ {∅} assigns to every state a non-empty set of available actions, and

• ∆ : S × Act → D(S) is a transition function that for each state s and (available)
action a ∈ Av(s) yields a probability distribution over successor states.

A state s ∈ S is called terminal, if ∆(s, a)(s) = 1 for all enabled actions a ∈ Av(s).

7

2 Preliminaries

Remark 1. We assume w.l.o.g. that actions are unique for each state, i.e. Av(s)∩Av(s′) = ∅
for s 6= s′ and denote the unique state associated with action a in the MDP M by
state(a,M). This can be achieved in general by replacing Act with S ×Act and adapting
Av and ∆.

Note that we assume the set of available actions to be non-empty. This means that a
run can never get ‘stuck’ in a degenerate state without successors.

For ease of notation, we overload functions mapping to distributions f : Y → D(X)
by f : Y × X → [0, 1], where f(y, x) := f(y)(x). For example, instead of δ(s)(s′) and
∆(s, a)(s′) we write δ(s, s′) and ∆(s, a, s′), respectively. Furthermore, given a distribution
d ∈ D(X) and a function f : X → R mapping elements of a set X to real numbers, we
write d〈f〉 :=

∑
x∈X d(x)f(x) to denote the weighted sum of f with respect to d. For

example, δ(s)〈f〉 and ∆(s, a)〈f〉 denote the weighted sum of f over the successors of s in
MC and s with action a in MDP, respectively.

State-Action Pairs

Throughout this work, we often speak about state-action pairs. This refers to tuples of
the form (s, a) where s ∈ S and a ∈ Av(s) or equivalently a ∈ Act and s = state(a,M).
Due to our restriction that each action is associated with exactly one state, denoting
both the state and action is superfluous, strictly speaking. Nevertheless, we keep both
elements for consistency with other works, with the exception of Chapter 6, where this
notation would introduce significant overhead. Given a set of states S′ ⊆ S and an
available-action function Av′ : S′ → P(Act) \ ∅ we write, slightly abusing notation,
S′ ×Av′ = {(s, a) | s ∈ S′, a ∈ Av′(s)} to denote the set of state-action pairs obtained in
S′ using Av′. In particular, S × Av denotes the set of all state-action pairs. Moreover,
for a set of state-action pairs K we also write s ∈ K if there exists an action a such that
(s, a) ∈ K. Dually, we also write a ∈ K if an appropriate state s exists.

Note that there are two isomorphic representations of sets of state-action pairs, namely
as a set of pairs X ⊆ S ×Av or as a pair of sets (R, B) ∈ 2S × 2Act. We make use of both
views and note explicitly when switching from one to another.

Paths & Strategies

An infinite path ρ in a Markov chain is an infinite sequence ρ = s1s2 · · · ∈ Sω, such that
for every i ∈ N we have that δ(si, si+1) > 0. A finite path (or history) % = s1s2 . . . sn ∈ S?

is a non-empty, finite prefix of an infinite path of length |%| = n, ending in some state sn,
denoted by last(%). For simplicity, we define |ρ| =∞ for infinite paths ρ. We use ρ(i) and
%(i) to refer to the i-th state si in a given (in)finite path. A state s occurs in an (in)finite
path ρ, denoted by s ∈ ρ, if there exists an i ≤ |ρ| such that s = ρ(i). We denote the set
of all finite (infinite) paths of an Markov chain M by FPathsM (PathsM). Further, we use
FPathsM,s (PathsM,s) to refer to all (in)finite paths starting in state s ∈ S. Observe that in
general FPathsM and PathsM are proper subsets of S? and Sω, respectively, as we imposed
additional constraints.

8

2 Preliminaries

Similarly, an infinite path in an MDP is some infinite sequence ρ = s1a1s2a2 · · · ∈
(S ×Av)ω, such that for every i ∈ N, ai ∈ Av(si), setting the length |ρ| =∞. Finite paths
% and last(%) are defined analogously as elements of (S ×Av)? × S and the respective last
state. Again, ρ(i) and %(i) refer to the i-th state in an (in)finite path with an analogous
definition of a state occurring, |%| denotes the length of a finite path, and we refer to the set
of (in)finite paths of an MDP M by FPathsM (PathsM) and write FPathsM,s (PathsM,s)
for all such paths starting in a state s ∈ S. Further, we use ρa(i) and %a(i) to denote the
i-th action in the respective path. We say that a state-action pair (s, a) is in an (in)finite
path % if there exists an i < |%| with s = %(i) and a = %a(i).

A Markov chain together with a state s ∈ S naturally induces a unique probability
measure PrM,s over infinite paths [BK08, Chapter 10]. For MDP, we first need to eliminate
the non-determinism in order to obtain such a probability measure. This is achieved by
strategies (also called policy, controller, or scheduler).

Definition 3. A strategy on an MDP M = (S, Act, Av, ∆) is a function π : FPathsM →
D(Act), such that supp(π(%)) ⊆ Av(last(%)) for all % ∈ FPathsM.

Intuitively, a strategy is a ‘recipe’ describing which step to take in the current state,
given the evolution of the system so far. Note that the strategy may yield a distribution
on the actions to be taken next.

A strategy π is called memoryless (or stationary) if it only depends on last(%) for all
finite paths % and we identify it with π : S → D(Act). Similarly, it is called deterministic,
if it always yields a Dirac distribution, i.e. picks a single action to be played next, and we
identify it with π : FPathsM → Act. Together, memoryless deterministic strategies can
be treated as functions π : S → Act mapping each state to an action. We write ΠM to
denote the set of all strategies of an MDP M, ΠM

M for memoryless strategies, and ΠMD
M

for all memoryless deterministic strategies.
Fixing any strategy π induces a Markov chain Mπ = (FPathsM, δπ), where for some

state % = s1a1 . . . sn ∈ FPathsM, appropriate action an+1 ∈ Av(sn) and successor state
sn+1 ∈ supp(∆(sn, an+1)) the successor distribution is defined as δπ(%, %an+1sn+1) =
π(%, an+1) ·∆(s, an+1, sn+1). In particular, for any MDP M, strategy π ∈ ΠM, and state
s, we obtain a measure over paths(1) PrMπ ,s, which we refer to as Prπ

M,s. Observe that all
these measures operate on the same probability space, namely the set of all infinite paths
PathsM. See [Put94, Section 2.1.6] for further details. Consequently, given a measurable
event A, we can define the maximal probability of this event starting from state ŝ under
any strategy by

Prsup
M,s[A] := supπ∈ΠMPrπ

M,ŝ[A].

Note that depending on the structure of A it may be the case that no optimal witness
exists and we have to resort to the supremum instead of the maximum. We lift this
restriction for our particular use case later on. For a memoryless strategy π ∈ ΠM

M, we
can identify Mπ with a Markov chain over the states of M.

(1)Technically, this measure operates on infinite sequences of finite paths, as each state of Mπ is a finite
path. But, this measure can easily be projected directly on finite paths.

9

2 Preliminaries

Given an MDP M, memoryless strategy π ∈ ΠM
M, and a function assigning a value to

each state-action pair f : S × Av → R, we define π[f] : S → R as the expected value of
taking one step in state s following the strategy π, i.e.

π[f](s) :=
∑

a∈Av(s),s′∈S

π(s, a) · f(s, a).

Strongly Connected Components and End Components

A non-empty set of states C ⊆ S in a Markov chain is strongly connected if for every pair
s, s′ ∈ C there is a non-trivial path from s to s′. Such a set C is a strongly connected
component (SCC) if it is inclusion maximal, i.e. there exists no strongly connected C ′

with C (C ′. Thus, each state belongs to at most one SCC. An SCC is called bottom
strongly connected component (BSCC) if additionally no path leads out of it, i.e. for all
s ∈ C, s′ ∈ S \C we have δ(s, s′) = 0. The set of SCCs and BSCCs in an MC M is denoted
by SCC(M) and BSCC(M), respectively.

The concept of SCCs is generalized to MDPs by so called (maximal) end components
[De 97]. Intuitively, an end component describes a set of states in which the system can
remain forever.

Definition 4. LetM = (S, Act, Av, ∆) be an MDP. A pair (R, B), where ∅ 6= R ⊆ S and
∅ 6= B ⊆

⋃
s∈R Av(s), is an end component of an MDP M if

(i) for all s ∈ R, a ∈ B ∩Av(s) we have supp(∆(s, a)) ⊆ R, and

(ii) for all s, s′ ∈ R there is a finite path % = sa0 . . . ans′ ∈ FPathsM ∩ (R×B)? ×R, i.e.
the path stays inside R and only uses actions in B.

An end component (R, B) is a maximal end component (MEC) if there is no other end
component (R′, B′) such that R ⊆ R′ and B ⊆ B′.

By abuse of notation, we identify an end component with the respective set of states,
e.g., s ∈ E = (R, B) means s ∈ R. Observe that given two overlapping ECs (R1, B1) and
(R2, B2) with R1 ∩R2 6= ∅, their union (R1 ∪R2, B1 ∪B2) also is an EC. Again, a MEC is
bottom if there are no outgoing transitions; each state belongs to at most one MEC. The
set of ECs of an MDP M is denoted by EC(M), the set of MECs by MEC(M).

Remark 2. For a Markov chain M, the computation of SCC(M), BSCC(M) and a
topological ordering of the SCCs can be achieved in linear time w.r.t. the number of states
and transitions by, e.g., Tarjan’s algorithm [Tar72]. Similarly, the MEC decomposition
of an MDP can be computed in polynomial time [CY95]. For improved algorithms on
general MDP and various special cases see [CH11; CH12; CH14].

Note that these components fully capture the limit behaviour of any Markov chain and
decision process, respectively. Intuitively, both of these statements say that a run of such
systems eventually remains inside one BSCC or MEC forever, respectively.(2)

(2)The measurability of the sets in the following two lemmas is well known, proofs can be found in, e.g.,
[BK08, Chapter 10].

10

2 Preliminaries

Lemma 1 (MC almost-sure absorption). For any MC M and state s, we have that
PrM,s[{ρ | ∃Ri ∈ BSCC(M).∃n0 ∈ N.∀n > n0.ρ(n) ∈ Ri}] = 1.

Proof. Follows from [BK08, Theorem 10.27].

Lemma 2 (MDP almost-sure absorption). For any MDP M, state s, and strategy π, we
have that Prπ

M,s[{ρ | ∃(Ri, Bi) ∈ MEC(M).∃n0 ∈ N.∀n > n0.ρ(n) ∈ Ri}] = 1.

Proof. Follows from [De 97, Theorem 3.2].

2.2 Reachability

For an MDP M = (S, Act, Av, ∆) and a set of target states T ⊆ S, bounded reachability
for step k, denoted by ♦≤kT = {ρ ∈ PathsM | ∃i ∈ {0, . . . , k}. ρ(i) ∈ T}, is the set of all
infinite paths that reach a state in T within k steps. Analogously, (unbounded) reachability
♦T = {ρ ∈ PathsM | ∃i ∈ N. ρ(i) ∈ T} are all paths which eventually reach the target set
T . We overload the ♦ operator to also accept sets of state-action pairs and sets of actions,
with analogous semantics. The sets of paths produced by ♦ are measurable for any MDP,
target set, and step bound [BK08, Sec. 10.1.1].(3) Note that for a set T , both ♦T and ♦T

are well-defined, however they refer to two different concepts. The former denotes the set
of all paths reaching a state not in T , whereas the latter is the set of all paths which never
reach T (also called co-reachability or safety).

Now, it is straightforward to define the maximal reachability problem of a given set of
states. Given an MDP M, target set T , and state s, we are interested in computing the
maximal probability of eventually reaching T , starting in state s. Formally, we want to
compute the value of state s:

V(s) := Prsup
M,s[♦T] = supπ∈ΠMPrπ

M,s[♦T].

It is known that an optimal strategy always exists and memoryless deterministic strategies
are sufficient to achieve the optimal value [De 97, Theorem 3.10], i.e.

V(s) = Prmax
M,s[♦T] = maxπ∈ΠMPrπ

M,s[♦T] = maxπ∈ΠMD
M

Prπ
M,s[♦T].

This state value function satisfies a straightforward fixed point equation, namely

V(s) =

1 if s ∈ T ,

maxa∈Av(s)∆(s, a)〈V〉 otherwise.
(2.1)

Moreover, V is the smallest fixed point of this equation [Put94]. In our approach, we also
deal with values of state-action pairs (s, a) ∈ S ×Av, where

V(s, a) := ∆(s, a)〈V〉 =
∑

s′∈S
∆(s, a, s′) · V(s′).

(3)Recall that we defined MDP to have finite state and action sets.

11

2 Preliminaries

Intuitively, V(s, a) is the value in state s when playing action a and then acting optimally.
The overall value of s, V(s), is obtained by choosing an optimal action, i.e. V(s) =
maxa∈Av(s) V(s, a).

Remark 3. Our algorithms primarily work by approximating these state-action values
and derive state-values by the above equation. This may seem counter-intuitive at first,
since we could as well directly work with state values and derive state-action values as
described above, saving memory. However, our approaches are inspired by reinforcement
learning [SB98], explained later, which traditionally assigns values to actions. Thus, we
stick with this convention in our algorithms as well. Finally, in the limited information
setting of Chapters 5 and 6, the algorithms do not have access to the exact transition
probabilities and hence cannot exploit the above equation.

See [For+11, Sec. 4] for an in-depth discussion of reachability on finite MDP.

Approximate Solutions

The value of a state V(s) can, for example, be determined using linear programming [CY90;
For+11](4) in polynomial time [Kha79; Kar84]. Unfortunately, this approach turns out to
be inefficient in practice [HM14; Ash+17]. One way to potentially ease the task is by only
considering approximate solutions. In particular, on top of an MDP M, starting state ŝ,
and target set T , we assume that we are given a precision requirement ε > 0. We say a
strategy π is ε-optimal, if Prπ

M,ŝ[♦T] + ε > V(s). Analogously, a tuple of values (l, u) is
ε-optimal if 0 ≤ u− l < ε and V(ŝ) ∈ [l, u], i.e. l and u are lower and upper bounds on the
value, respectively. All algorithms in this work are designed to efficiently compute such
ε-optimal values. Due to technical details, we omit computation of a witness strategy.

2.3 Probabilistic Learning Algorithms

In order to obtain such approximate solutions, we study a class of learning-based algorithms
that (stochastically) approximate the value function, inspired by approaches from the field
of machine learning. Let us fix an MDP M = (S, Act, Av, ∆), starting state ŝ, and target
set T ⊆ S. Recall that by approximating the state-action values, we approximate the
overall value of a state. Inspired by BRTDP (bounded real-time dynamic programming)
[MLG05](5), we consider algorithms which maintain and update Upper bounds Up : S ×
Av → [0, 1] and Lower bounds Lo : S×Act→ [0, 1] of these sate-action values V(s, a). The
functions Up and Lo are initialised to appropriate values such that Lo(s, a) ≤ V(s, a) ≤
Up(s, a) for all s ∈ S and a ∈ Av(s). This is trivially satisfied by Lo(·, ·) = 0 and
Up(·, ·) = 1, but some non-trivial bounds obtained by previous computations or domain
knowledge can be incorporated. We define the state-bounds by

Up(s) := maxa∈Av(s)Up(s, a), and Lo(s) := maxa∈Av(s)Lo(s, a).

(4)See [Sch99] for details on linear programming in general.
(5)See [BBS95] for the ‘non-bounded’ case RTDP.

12

2 Preliminaries

Clearly, Lo(s) ≤ V(s) ≤ Up(s), thus we can determine the value of a state ε-precise when
these respective bounds are sufficiently close. In particular, if we have that

Up(ŝ)− Lo(ŝ) = maxa∈Av(ŝ)Up(ŝ, a)−maxa∈Av(ŝ)Lo(ŝ, a) < ε,

the values (Lo(s), Up(s)) are ε-optimal.
Our learning algorithms update the upper and lower bounds by repeatedly selecting

‘interesting’ / promising state-action pairs of the system M, usually by sampling the
system beginning in the starting state ŝ. As such, they are similar to Q-learning [WD92]
approaches, a commonly used reinforcement learning technique. By following appropriate
sampling heuristics the algorithm learns ‘important’ areas of the system and focusses com-
putation there, potentially omitting irrelevant parts of the state space without sacrificing
correctness. For example, given a state s we propose to select an action a with maximal
upper bound Up(s, a), as such an action is the most ‘promising’ one. Then, either this
action keeps up to its promise, which will eventually be reflected by an increasing lower
bound, or the algorithm finds that the upper bound is too high and lowers it. As such,
this idea is very similar to optimism in the face of uncertainty [Sze10, Section 4.2], [LR85].
We only know that the exact value lies between the upper and lower bound, thus we are
optimistic and assume the best value during sampling.

The algorithms repeatedly experience (learning) episodes, where each episode consists
of several steps. One episode corresponds to sampling a path of some length in the system,
while one step corresponds to sampling the successor state, i.e. each episode comprises
several steps. Throughout this paper, we use e ∈ N exclusively to refer to the e-th episode
of some algorithm execution. Later we also refer to distinct steps within episodes by t ∈ N.
In particular, t denotes to the t-th overall step. Finally, te denotes the first step of the
e-th episode, i.e. its starting step.

The considered algorithms make heavy use of randomness during their execution. Thus,
in order to reason about them, we model them as a stochastic process over an appropriate
measure space (A,A,PA). The entire state of our algorithms at the beginning of episode
e can be derived from the sequences of state-action pairs it considered until episode e.(6)

Hence, we use episodes as our primitive objects. We need to consider both finite and
infinite episodes, since (i) a single episode may comprise infinitely many state-action pairs
and (ii) the algorithm potentially does not terminate, giving rise to an infinite number of
episodes. Thus, we set A = ((S×Av×S)×)×, where S× = S?∪Sω. The tuples S×Av×S

correspond to the current state, chosen action, and sampled successor state, respectively.
The σ-field A is obtained analogously to the σ-field for Markov chains by considering
cylinder sets induced by finite prefixes, see [Put94, Section 2.1.6]. For a given prefix, its
probability can be obtained by computing the probability of each episode occurring in the
MDP given the current state of the algorithm.

Now that we defined the probability space these algorithms operate in, we can define

(6)Observe that Algorithm 2 and Algorithm 3 are allowed to introduce some further side effects due to
their ‘template’-structure. We assume w.l.o.g. that these side effects are either deterministic or can be
properly incorporated into the above measure space.

13

2 Preliminaries

notions like almost sure convergence.

Definition 5. Denote by A(ε) the instance of learning algorithm A with precision ε. We
say that A converges (almost) surely if, for every MDP M, starting state ŝ, target set
T , and precision ε > 0, the computation of A(ε) terminates (almost) surely and yields
ε-optimal values l and u.

We consider a symbolic input encoding, where the MDP’s properties are specified
implicitly. In particular, we design our algorithms such that they are applicable when
the available actions Av and transition function ∆ are given as oracles. This means that
given a state s we can compute Av(s), and given a state-action pair (s, a) we obtain the
successor distribution ∆(s, a). This allows us to achieve sub-linear runtime for some classes
of MDP w.r.t. their number of states and transitions. Note that most practical modelling
languages such as the PRISM language [KNP11] or JANI [Bud+17] describe models in
such a way.

Since our learning algorithms in essence only rely on being able to repeatedly sample the
system we can drastically reduce the knowledge needed about the system. In particular,
we consider the setting of limited information, where the algorithm only has very restricted
access to the system in question. There, we are only provided with bounds on some
properties of the MDP, e.g., the number of states, together with an oracle for the available
actions and a ‘sampling’ oracle, which yields a successor according to the underlying,
hidden distributions. The algorithm thus can only simulate an execution of the MDP
starting from a state s, repeatedly choosing an action from the set of available actions and
querying the sampling oracle for a successor. This corresponds to a ‘black-box’ setting,
where we can easily interact with a system and observe the current state, but have very
limited knowledge about its internal transition structure, as might be the case with complex
physical systems.

Here, we cannot directly apply the ideas of Q-learning, since the value of the sampled
successor might not correspond to the actual value of the action. Instead, the algorithm
remembers the result of recent visits, delaying the learning update. By gathering enough
information, the average of these results corresponds to the true value with high confidence.
This idea is exploited by delayed Q-learning [Str+06]. In this setting, we inherently cannot
guarantee almost sure convergence, instead we demand that the algorithm terminates
correctly with sufficiently high probability, specified by the confidence δ > 0.

Definition 6. Denote by A(ε, δ) the instance of learning algorithm A with precision ε and
confidence δ. We say that A is probably approximately correct (PAC) if for every MDP M,
starting state ŝ, target set T , precision ε > 0 and confidence δ > 0, with probability at
least 1− δ the computation of A(ε, δ) terminates and yields ε-optimal values l and u. In
other words, we require that the set of correct and terminating executions has a measure
of at least 1− δ under PA.

See [Val84; Ang88; Str+06; Str08] for several, slightly different variants of PAC. Some
definitions also require that the result is obtained within a particular time-bound. We
prove appropriate bounds for both variants of our PAC approach.

14

2 Preliminaries

Remark 4. Note that we assume the system to be ‘observable’ in both settings, i.e. the
algorithm can access the precise current state of the system and the set of available actions.
Extending our methods to partially observable systems, e.g. POMDP, is left for future
work. Moreover, we also assume that the system can be repeatedly ‘reset’ into the initial
configuration.

15

3 Complete Information – MDP without End Components

In this section, we treat the case of complete information, i.e. the algorithm has full access
to the system, in particular its transition function ∆. Moreover, we assume that the
system in question has no MECs, except two distinguished terminal states. This greatly
simplifies the reachability problem and allows us to gradually introduce our approach.
In Chapter 4, we highlight the difficulties of MECs (see Example 2) and generalize our
approach to arbitrary MDP.

3.1 The Ideas of Value Iteration

Our approach is based on ideas related to value iteration (VI) [How60]. Thus, we first
explain the basic principles of VI. Value iteration is a technique to solve, among others,
reachability queries on MDP. It essentially amounts to applying Bellman iteration [Bel66]
corresponding to the fixed point equation in Equation 2.1 [For+11, Sec. 4.2]. In particular,
starting from an initial value vector v0 with v0(s) = 1 if s ∈ T and 0 otherwise, we apply
the iteration

vn+1(s) =

1 if s ∈ T ,

maxa∈Av(s)∆(s, a)〈vn〉 otherwise.

It is known that this iteration converges to the true value V in the limit from below,
i.e. for all states s we have (i) limn→∞ vn(s) = V(s) and (ii) vn(s) ≤ vn+1(s) ≤ V(s) for
all iterations n [Put94, Thm. 7.2.12](1). It is not difficult to construct a system where
convergence up to a given precision takes exponential time [HM14], but in practice VI often
is much faster than methods based on linear programming (LP)(2), which in theory has
worst-case polynomial runtime and yields precise answers [Kar84]. An important practical
issue of VI is the absence of a stopping criterion, i.e. a straightforward way of determining
in general whether the current values vn(s) are close to the true value function V(s), as
discussed in, e.g., [For+11, Sec. 4.2]. We solve this problem by additionally computing
upper bounds, converging to the true value from above.

While the value iteration approach updates all states synchronously, the iteration can
also be executed asynchronously. This means that we do not have to update the values
of all states (or state-action pairs) simultaneously. Instead, the update order may be
chosen by heuristics, as long as fairness constraints are satisfied, i.e. eventually all states
get updated. This observation is essential for our approach, since we want to focus our
computation on ‘important’ areas.

(1)Note that reachability is a special case of expected total reward, obtained by assigning a one-time reward
of 1 to each goal state.

(2)See [BK08, Thm. 10.105] for an LP-based solution of reachability.

16

3 Complete Information – MDP without End Components

Algorithm 2 The BRTDP learning algorithm for MDPs without ECs.
Input: MDP M, state ŝ, precision ε, and initial bounds Up1 and Lo1.
Output: ε-optimal values (l, u), i.e. V(ŝ) ∈ [l, u] and 0 ≤ u− l < ε.

1: e← 1 . Initialize
2: while Upe(ŝ)− Loe(ŝ) ≥ ε do
3: %e ← SamplePairs(M, ŝ, Upe, Loe, ε) . Sample pairs to update
4: Upe+1 ← Upe, Loe+1 ← Loe
5: for all (s, a) ∈ %e do . Update the upper and lower bounds
6: Upe+1(s, a)← ∆(s, a)〈Upe〉
7: Loe+1(s, a)← ∆(s, a)〈Loe〉
8: e← e + 1
9: return (Loe(ŝ), Upe(ŝ))

3.2 The No-EC BRTDP Algorithm

With these ideas in mind, we are ready to present our first algorithm. Throughout this
section, fix a required precision ε > 0, an MDPM = (S, Act, Av, ∆) with two distinguished
states s+, s− ∈ S, target set T = {s+} and a starting state ŝ. We assume that M has no
MECs except the two terminal states s+ and s−.

Assumption 1. MDP M has no MECs, except two trivial ones comprising the tar-
get state s+ and sink state s−, respectively. Formally, we require that MEC(M) =
{({s+}, Av(s+)), ({s−}, Av(s−))}.

Observe that with Assumption 1 and T = {s+}, we clearly have V(s+) = 1 and
V(s−) = 0. We define our BRTDP approach in Algorithm 2. Recall that we defined Up(s) =
maxa∈Av(s) Up(s, a) and Lo(s) analogously. As already mentioned in the introduction, the
algorithm repeatedly samples sets of state-action pairs from the system. Based on these
experiences, it updates the upper and lower bounds using Bellman updates (or Bellman
backups), corresponding to Equation (2.1), until convergence.

To allow for practical optimization, we leave the sampling method SamplePairs
undefined and instead only require some generic properties. A simple implementation
is given by sampling a path starting in the initial state and following random actions.
However, SamplePairs may use randomization and sophisticated guidance heuristics, as
long as it satisfies certain conditions in the limit.

Remark 5. We highlight that SamplePairs is not required to return paths. Instead it
can yield any set of state-action pairs. However, when dealing with the limited information
setting, we require sampling paths. Thus, it may be instructive to think of SamplePairs
as a procedure returning paths.

3.3 Proof of Correctness

In this section, we prove correctness of the algorithm, i.e. that the returned result is
correct and that the algorithm terminates. We now first establish correctness of the result,
assuming that the received input is sane.

17

3 Complete Information – MDP without End Components

Assumption 2. We have that (i) the given initial bounds Up1 and Lo1 are correct,
i.e. Lo1(s, a) ≤ V (s, a) ≤ Up1(s, a) for all (s, a) ∈ S × Av, and (ii) Lo1(s+) = 1 and
Up1(s−) = 0.

Lemma 3. Assume that Assumption 2 holds. Then, during any execution of Algorithm 2
we have for every episode e and all state-action pairs (s, a) that

Loe(s, a) ≤ Loe+1(s, a) ≤ V(s, a) ≤ Upe+1(s, a) ≤ Upe(s, a).

Proof. Initially, we have that Lo1(s, a) ≤ V(s, a) ≤ Up1(s, a) by Assumption 2. The
updates in Lines 6 and 7 clearly preserve these inequalities. A simple inductive argument
concludes the proof.

Lemma 4. Assume that Assumption 2 holds. Then, the result (l, u) of Algorithm 2 is
correct, i.e. (i) 0 ≤ u− l < ε, and (ii) V(ŝ) ∈ [l, u].

Proof. Clearly, (i) immediately follows from Lemma 3 and the main loop condition in
Line 2. Similarly, (ii) also follows from Lemma 3.

In order to prove (almost sure) convergence of Algorithm 2, we need some assumptions
on SamplePairs. Intuitively, SamplePairs may not neglect actions which might be the
optimal ones. In order to allow for a wide range of implementations for SamplePairs, we
present the rather liberal but technical condition of fairness in Assumption 3. We further
explain each part of this assumption in the following proof of convergence.

Before we present the assumption, we introduce the set of Up-optimal actions, which
is also used in the proof. Let MaxAe(s) := arg maxa∈Av(s) Upe(s, a) the set of actions
optimal (w.r.t. Upe) in state s during episode e. Note that assuming the algorithm does
not converge, the set MaxAe(s) may change infinitely often. For example, two equivalent
actions may get updated in an alternating fashion. Thus, for each state s, we also define the
set of actions that are optimal infinitely often as MaxA∞(s) :=

⋂∞
k=1

⋃∞
e=kMaxAe(s). This

set is non-empty, since there are only finitely many actions and MaxAe(s) is non-empty
for any episode e.

Assumption 3. Let {Upe}∞e=1 and {Loe}∞e=1 be consistent sequences of upper and lower
bounds, i.e. Lo1(s, a) ≤ Lo2(s, a) ≤ · · · ≤ V(s, a) ≤ · · · ≤ Up2(s, a) ≤ Up2(s, a) for all
state-action pairs (s, a). Moreover, let %1, %2, · · · ∈ P(S ×Act) \ ∅ any infinite sequence of
non-empty state-action sets produced by SamplePairs(M, ŝ, Upe, Loe, ε).

Set S∞ =
⋂∞

k=1
⋃∞

e=k{s ∈ S | s ∈ %e} the set of all states which occur infinitely often.
We analogously define the set of actions occurring infinitely often, denoted Act∞. Then,
we have that

1. the initial state is sampled infinitely often, i.e. ŝ ∈ S∞,

2. all actions which are optimal infinitely often are also sampled infinitely often, i.e.
MaxA∞(s) ⊆ Act∞ for every s ∈ S∞, and

3. all successors of optimal actions are sampled infinitely often, i.e. for every s ∈ S∞

and a ∈ MaxA∞(s) we have that supp(∆(s, a)) ⊆ S∞.

18

3 Complete Information – MDP without End Components

We say SamplePairs almost surely satisfies Assumption 3, if its conditions hold with
probability 1.

In essence, the assumption requires that all states which are reachable by following
optimal actions are indeed reached infinitely often in the limit: Starting from the initial
state (Item 1), we select each optimal action infinitely often (Item 2) and explore all
successors of these actions (Item 3). For each of these successors, we again select all
optimal actions, etc.

Lemma 5. Algorithm 2 terminates under Assumptions 1, 2 and 3. It terminates almost
surely if Assumption 3 is satisfied almost surely.

Proof. We prove the second case, i.e. almost sure termination, by contradiction. Assume
that Assumptions 1 and 2 hold, and that 3 holds a.s.. Further, assume for contradiction
that the set of non-terminating executions of Algorithm 2 has non-zero measure, i.e. the
while-loop is executed infinitely often.

Given some execution of Algorithm 3, define Diffe(s, a) := Upe(s, a)− Loe(s, a). Fix an
arbitrary action amax

e (s) ∈ MaxAe(s) for each episode e. Clearly, for any such action amax
e (s)

we have Diffe(s, amax
e (s)) = Upe(s) − Loe(s, amax

e) ≥ Upe(s) − Loe(s). By Lemma 3, the
limits Up∞(s, a) := lime→∞ Upe(s, a) and Lo∞(s, a) := lime→∞ Loe(s, a) are well defined
and finite for any state-action pair (s, a). Thus, Diff(s, a) := lime→∞ Diffe(s, a) and
Diff(s) := lim supe→∞ Diffe(s, amax

e (s)) is also well defined and finite. We prove that
Diff(ŝ) = 0 for almost all executions, contradicting the assumption, as then necessarily
Upe(ŝ)− Loe(ŝ) ≤ Diffe(ŝ) < ε for some e a.s.

Observe that the preconditions of Assumption 3 are satisfied through Lemma 3 and
Assumption 2, hence we have ŝ ∈ S∞ a.s. (I). Let S∞ the set of states seen infinitely often
as defined in Assumption 3. By the assumption, we also have that supp(∆(s, a)) ⊆ S∞

for all s ∈ S∞, a ∈ MaxA∞(s) a.s. (II).
Now, we identify a witness action aDiff(s) for the lim sup of Diff(s), i.e. an action

aDiff(s) such that Diff∞(s) = lime→∞ Diffe(s, aDiff(s)) and derive a fixed-point equation.
We have that Up∞(s, a) = Up∞(s, a′) for all s ∈ S∞ and a, a′ ∈ MaxA∞(s), as other-
wise one of the two actions would not be optimal eventually. Consequently, the limit
lime→∞ Upe(s, amax

e) is well defined and equals Up∞(s, a) for any a ∈ MaxA∞(s). Clearly,
lim supe→∞ Loe(s, amax

e) also is well defined, hence the lim sup of Diff(s) distributes over the
minus. Recall that for each state-action pair, the limit of Lo∞(s, a) is well defined. Thus,
the sequence Loe(s, amax

e) only has finitely many accumulation points and there exists an ac-
tion aDiff(s) ∈ MaxA∞(s) such that lim supe→∞ Loe(s, amax

e) = Lo∞(s, aDiff(s)). Together,
we have that Diff(s) = Up∞(s, aDiff(s)) − Lo∞(s, aDiff(s)). Since all states S∞ and all
optimal actions MaxA∞ are visited infinitely often, we have that Up∞(s, a) = ∆(s, a)〈Up∞〉
and Lo∞(s, a) = ∆(s, a)〈Lo∞〉 for all s ∈ S∞ and a ∈ MaxA∞(s) by the back-propagation
in Lines 6 and 7. Consequently, we have that Diff(s) = ∆(s, aDiff(s))〈Diff〉 for all s ∈ S∞,
since aDiff(s) ∈ MaxA∞(s) (III).

Finally, we use Assumption 1 together with the above equation to show that Diff(ŝ) = 0.
Let now the maximal difference Diffmax = maxs∈S∞ Diff(s) and define the witness states
SDiff = {s ∈ S∞ | Diff(s) = Diffmax}. Assume for a contradiction that we don’t have

19

3 Complete Information – MDP without End Components

ŝ

s+

s−

a1

b1

0.5

0.5

0.75 0.25

Figure 3.1: Example MDP where following the upper bounds is wrong.

Diff = 0 (a.s.). For Diff > 0 we clearly have s+, s− /∈ SDiff , as Diff(s+) = Diff(s−) = 0 by
Assumption 2 and Lemma 3. Consequently, SDiff cannot contain any EC by Assumption 1.
Since SDiff does not contain an EC, there exists some state s ∈ SDiff such that for all
a ∈ Av(s) we have supp(∆(s, a)) 6⊆ SDiff . In other words, for each action a ∈ Av(s), there
exists a state sa with both sa /∈ SDiff and ∆(s, a, sa) > 0. By definition of SDiff , we have
that Diff(sa) < Diffmax. In particular, we have that Diff(s, aDiff(s)) < Diff(s) (IV). For
readability, we abbreviate the witness action obtained in [III] by a := aDiff(s). Then

Diff(s) [III]= ∆(s, a)〈Diffmax〉 =
∑

s′∈S
∆(s, a, s′) ·Diff(s′)

[II]=
∑

s′∈S∞
∆(s, a, s′) ·Diff(s′)

=
∑

s′∈S∞\{sa}
∆(s, a, s′) ·Diff(s′) + ∆(s, a, sa) ·Diff(sa)

≤
∑

s′∈S∞\{sa}
∆(s, a, s′) ·Diffmax + ∆(s, a, sa) ·Diff(sa)

[IV]
<
∑

s′∈S∞\{sa}
∆(s, a, s′) ·Diffmax + ∆(s, a, sa) ·Diffmax

= Diffmax,

contradicting s ∈ SDiff and we have that Diffmax = 0. To conclude the proof, observe that
SDiff = S∞ a.s., as 0 ≤ Diff(s) ≤ Diffmax = 0 for all s ∈ S∞, and Diff(ŝ) = 0 a.s., since
ŝ ∈ S∞ a.s. by [I].

The proof for guaranteed convergence is completely analogous.

As an immediate consequence of Lemmas 4 and 5, we get the desired correctness.

Theorem 1. Assume that Assumptions 1, 2, and (almost surely) 3 hold. Then Algorithm 2
is correct and converges (almost surely).

Remark 6. If an implementation of SamplePairs satisfies Assumption 3 only almost
surely, we can easily obtain a surely terminating variant by interleaving it with a determ-
inistic sampling procedure, e.g., a round-robin method.

Example 1. Interestingly, following the optimal upper does not necessarily yield an
ε-optimal strategy, as shown by the MDP in Figure 3.1. Assume that initially we take
action a1, setting Up2(ŝ, a1) = Lo2(ŝ, a1) = 1

2 . Then, Up2(ŝ, b1) = 1 > Up2(ŝ, a1) and we
sample b1, updating Up3(ŝ, b1) = 3

4 , Up4(ŝ, b1) = 3
4 ·

3
4 , etc. This continues until the upper

bound of b1 is ε-close to 1
2 , when the algorithm terminates. Nevertheless, we will always

have Upe(ŝ, b1) > Upe(ŝ, a1). Note that one may have to adapt the transition probability
∆(ŝ, b1, s−) depending on ε. It is straightforward to also apply this example to our DQL
approach and as a counterexample to [Brá+14, Lemma 16]. 4

20

3 Complete Information – MDP without End Components

Following the maximal lower bound yields a strategy achieving at least this value, using
results on asynchronous VI [Put94]. We omit formal treatment of this claim, since we
are not concerned with extracting a witness strategy. This would entail some technical
difficulties in the general cases, which in turn distract from the central results.

21

4 Complete Information – General Case

In this section, we deal with the case of general MDP, in particular, we allow for arbitrary
ECs. We first illustrate with an example the additional difficulties arising when considering
general MDPs with non-trivial ECs. In particular, Algorithm 2 does not converge, even
on a small example.

Example 2. Consider the MDP depicted in Figure 4.1. Clearly, we can reach the
goal T = {s+} with probability 1

2 by playing a0 in ŝ and then b1 in s1. But the EC
({ŝ, s1}, {a0, a1}) causes issues for Algorithm 2. When running the algorithm on this
example MDP, we eventually have that Up(s1, b1) = Lo(s1, b1) = 1

2 , but Up(s1, a1) = 1,
since Up(ŝ) = 1. Similarly, we keep Up(ŝ, a0) = 1, as Up(s1) = 1. Informally, ŝ and s1

‘promise’ each other that the target state might still be reachable with probability 1, but
these promises depend on each other cyclically. Removing the internal behaviour of this
EC and ‘merging’ ŝ and s1 into a single state (with only action b1) solves this issue.

In general, by definition of ECs, every state inside an EC can be reached from any other
state with probability 1. Since we are interested in (unbounded) reachability, this means
that for an EC there can only be two cases. Either, the EC contains a target state. Then,
reaching any state of the EC is (a.s.) equivalent to reaching the target already and we do
not need to treat the internal transitions of the EC further. Otherwise, i.e. when the EC
does not contain a target state, we can also omit treatment of its internal behaviour and
only consider its interaction with outside states. For the remainder of the section, fix an
arbitrary MDP M = (S, Act, Av, ∆), starting state ŝ, target set T , and precision ε > 0.

Lemma 6. Let (R, B) ∈ EC(M) be an EC of M. Then, Prmax
M,s[♦{s′}] = 1 for any states

s, s′ ∈ R and consequently Prmax
M,s[♦T] = Prmax

M,s′ [♦T] for any target set T ⊆ S.

Proof. Follows directly from [Cie+08, Lemma 1] (observe that the first claim is a special
case of the second claim with T = {s′}).

In other words, states in the same EC are equivalent for reachability and we can apply a
quotienting construction w.r.t. to ECs. This idea has been exploited by the MEC quotient
construction [De 97; Cie+08; HM14], a preprocessing step where first all MECs are
identified and then ‘collapsed’ into a representative state. However, this approach requires
that the whole graph structure of the MDP is known. Constructing the whole graph of
the system may be prohibitively expensive or even impossible, as, e.g., in our limited
knowledge setting (see Definition 8). Hence, we propose a modification to the BRTDP
algorithm, which detects and handles ECs ‘on-the-fly’. The algorithm will repeatedly
identify ECs and maintain a separate, simplified MDP, which is similar to a MEC quotient.

22

4 Complete Information – General Case

ŝ s1

s+

s−

a0

a1

b1
0.5

0.5

Figure 4.1: Example MDP with an EC where Algorithm 2 does not converge.

ŝ s1

s2 s3

s({ŝ,s1},{a0,a1})

s({s2,s3},{a2,a3})

s−

s+

a0

a1

a2

a3

b0 b1 b0 b1

rem1

rem2

a−

a+

Figure 4.2: Example of an MDP (left) and its collapsed version (right) with T = {s2} and
EC = {({ŝ, s1}, {a0, a1}), ({s2, s3}, {a2, a3})}.

4.1 Collapsing End Components

As already explained, collapsing an EC can be viewed as replacing it with a single
representative state, omitting the internal behaviour of the EC. In the following definition,
we introduce the collapsed MDP, where end components are merged into representative
states. Moreover, we again introduce the special states s+ and s−, acting as a target and
sink respectively, to avoid corner cases. Many statements in this section are similar to
[De 97, Section 6.4] but adapted to our particular use case. Note that our definition of
collapsed MDP in particular depends on the target set T .

Definition 7. Let EC = {(R1, B1), . . . , (Rn, Bn)} ⊆ EC(M) be a (possibly empty) set of
ECs in M with Ri pairwise disjoint and Bi 6= ∅. Define REC =

⋃
i Ri and BEC =

⋃
i Bi

the set of all states and actions in EC, respectively.
The collapsed MDP Mc = (Sc, Actc, Avc, ∆c) = collapse(M, EC, ŝ, T) is obtained by

• Sc = S \REC∪{s(Ri,Bi)}∪{s+, s−}, where s(Ri,Bi) /∈ S are new representative states,
s+ is the new target state, and s− is a new sink state,

• Actc = Act \BEC ∪ {remi} ∪ {a+, a−}, where remi /∈ Act are new remain actions,

• Avc(s) is defined by

– Avc(s) = Av(s) for s ∈ S \REC,(1)

– Avc(s(Ri,Bi)) =
⋃

s∈Ri
Av(s) \Bi ∪ {remi},

– Avc(s+) = {a+}, Av′(s−) = {a−}, and

• ∆c is defined by

– ∆c(sc, ac, s′c) =
∑

s′∈states(s′c) ∆(state(ac,M), ac, s′) for sc, s′c ∈ Sc \ {s+, s−}
and ac ∈ Avc(sc) ∩B,

– ∆c(s(Ri,Bi), remi) = {s+ 7→ 1} if T ∩Ri 6= ∅ and {s− 7→ 1} otherwise, and
(1)Recall that actions in BEC are only available for states in REC, hence Av(s) ⊆ Actc for other states.

23

4 Complete Information – General Case

– ∆c(s+, a+, s+) = 1, ∆′(s−, a−, s−) = 1,

with the following auxiliary functions

• collapsed : S → Sc maps states of M to their corresponding state in the collapsed
MDP, i.e. collapsed(s) = s(Ri,Bi) if s ∈ Ri for some i and collapsed(s) = s otherwise,

• states : Sc \{s+, s−} → 2S maps states in the collapsed MDP to the set of states they
represent, i.e. states(sc) = Ri if sc = s(Ri,Bi) for some i and states(sc) = {sc} ⊆ S

otherwise,

• equiv : S → 2S maps states ofM to all states in their EC, i.e. equiv(s) = Ri if s ∈ Ri

for some i and equiv(s) = {s} otherwise.

For ease of notation, we extend these auxiliary functions to sets of states in the obvious way,
i.e. collapsed(R) = {collapsed(s) | s ∈ R}, states(Rc) =

⋃
sc∈Rc states(sc), and equiv(R) =⋃

s∈R equiv(s). Finally, if ŝ ∈ Ri for some i, we identify ŝ with s(Ri,Bi) for ease of notation.
This guarantees that we always have ŝ ∈ Sc.

See Figure 4.2 for an example of a collapsed MDP. Observe that given a set EC explicitly,
the collapsed MDP can be computed on-the-fly, without constructing the original MDP
completely. In particular, given a state s in the MDPM, we can compute the corresponding
state sc = collapsed(s), and given such a state sc, we can directly compute Avc(sc) and
∆c(sc, ac) for all actions a ∈ Avc(sc), based on the given set EC.

Now, we prove some useful properties about the collapsed MDP. These properties are
rather intuitive, however the corresponding proofs are surprisingly technical and may be
skipped. In essence, we prove that (i) there is a correspondence of paths between the
original and the collapsed MDP, (ii) there is a correspondence of ECs between the two
MDPs, and (iii) the reachability probability is equal on the two MDP.

For the remainder of this section, let Mc = (Sc, Actc, Avc, ∆c) = collapse(M, EC, ŝ, T)
be the collapsed MDP of M, where EC = {(Ri, Bi)}ni=1 is any appropriate set of end
components.

Lemma 7. We have that collapsed(state(a,M)) = state(a,Mc) for all a ∈ Act ∩Actc.

Proof. First, observe that Act ∩ Actc = Actc \ {a+, a−, remi} by definition. The claim
follows by a case distinction on sc = state(a,Mc). If sc ∈ S, then Av(sc) = Avc(sc)
and collapsed(sc) = sc. If instead sc = s(Ri,Bi) for some (Ri, Bi) ∈ EC, we have that
a ∈

⋃
s∈Ri

Av(s) \ Bi. Thus, there exists a state s ∈ Ri such that s = state(a,M). But
then by definition collapsed(s) = sc.

The following two lemmas show how we can relate paths in the two MDPs with each
other. See [De 97, Section 6.4.1] for an alternative view.

Lemma 8. Let % = s1a1 . . . an−1sn ∈ FPathsM be a finite path in the MDP M. There
exists a number m ≤ n and indices i1, . . . , im with 1 ≤ ij < ij+1 ≤ n such that %c =
collapsed(si1)ai1 . . . aim−1collapsed(sim) ∈ FPathsMc is a finite path in the collapsed MDP
Mc with collapsed(s1) = collapsed(si1) and collapsed(sn) = collapsed(sim).

24

4 Complete Information – General Case

Proof. We construct the path %c inductively. Clearly, we start with i1 = 1 and sc
1 =

collapsed(s1). Now, either all actions of % are in BEC, then by definition of ECs all states
of % are within the same EC and we are done. Otherwise, let a be the first action along
the path % such that a ∈ Actc (i.e. a /∈ BEC) and let its index equal j. Set i2 = j, ac

1 = a

and sc
2 = collapsed(si+1). Clearly, a ∈ Av(sc

1). Repeat the argument with the path %′

equal to the suffix of % starting at j + 1.

Lemma 9. Let %c = sc
1ac

1 . . . ac
m−1sc

m ∈ FPathsMc be a finite path in the collapsed MDP
Mc not containing the special states s+, s−. There exists a finite path % = s1a1 . . . an−1sn ∈
FPathsM in the MDP M with n ≥ m and indices i1, . . . , im with 1 ≤ ij < ij+1 ≤ n and

• sk ∈ states(sc
j) for all j and k with ij ≤ k < ij+1 (defining im+1 = n + 1) and

• if sc
j = s(Ri,Bi) then ak ∈ Bi for all j and k with ij ≤ k < ij+1 − 1.

Proof. Similar to the above proof, we construct the path % inductively. Distinguish two
cases for sc

1. If sc
1 ∈ S, set s1 = sc

1 and a1 = ac
1 and repeat the argument with the next step

of %c. Otherwise, we have that sc
1 = s(Ri,Bi) for some EC (Ri, Bi) ∈ EC. Since (Ri, Bi) is an

EC in M, there exists a finite path in FPathsM only using actions of Bi from any state in
Ri to state(ac

1,M). This path corresponds to the first state-action pair in %c. By definition,
there exists a state s′ ∈ S such that s′ ∈ supp(∆(state(ac

1,M), ac
1)) and collapsed(s′) = sc

2.
Thus, we can extend the above path by ac

1s′ and repeat the argument.

Based on the previous lemmas, we can establish a correspondence of end components
between the original MDP and its (partly) collapsed version. In particular, for every EC
in the original MDP there either exists a single state representing this EC or a new EC in
the collapsed MDP.

Lemma 10. For any EC (R, B) ∈ EC(M) in the MDP M we either have

1. an EC (Rc, Bc) in Mc, where Rc = collapsed(R) and Bc = B ∩Actc, or

2. a state s(R′,B′) ∈ Sc with R ⊆ R′ and B ⊆ B′.

Proof. Observe that Case 2 is trivial by definition, in particular this case is equivalent
to B ⊆ Bi for some i. Moreover, Case 1 and Case 2 are mutually exclusive since by
construction for any s(Ri,Bi) there is no B ⊆ Bi such that ({s(Ri,Bi)}, B) is an EC in Mc.
Let thus (R, B) be an EC in the MDP M with B 6⊆ Bi for all i. We show that (Rc, Bc)
with Rc = collapsed(R) and Bc = B ∩Actc is an EC in Mc.

First, we show by contradiction that B 6⊆ BEC (I), i.e. B cannot comprise only internal
actions of the ECs in EC. Recall that, by assumption, the EC states Ri are disjoint and
Bi are subsets of the actions enabled in the respective states of Ri. If (R, B) is an EC
with B 6⊆ Bi for all i, but B ⊆ BEC, (R, B) thus necessarily has to contain states of at
least two ECs from EC. Formally, there exist two states s, s′ ∈ R with s ∈ Ri, s′ ∈ Rj ,
and i 6= j. Since (R, B) is an EC, there exists a path from s to s′ and vice versa, using
only actions from B. As B ⊆ BEC, these actions were available in the ECs before already.

25

4 Complete Information – General Case

Since s and s′ are in two, state disjoint ECs, there exists a state s′′ and action a in EC
(Ri, Bi) with supp(∆(s′′, a)) 6⊆ Ri, contradicting the EC condition and proving [I].

Furthermore, we prove that Rc =
⋃

a∈Bc state(a,Mc) (II). Observe that by assumption
we have R =

⋃
a∈B state(a,M). By definition of Bc = B ∩ Actc, we thus have that⋃

ac∈Bc state(ac,M) ⊆ R. Consequently

⋃
ac∈Bc

collapsed(state(ac,M)) ⊆ collapsed(R) = Rc

Applying Lemma 7 yields
⋃

ac∈Bc collapsed(state(ac,M)) =
⋃

ac∈Bc state(ac,Mc), thus⋃
ac∈Bc state(ac,Mc) ⊆ Rc.
Now, assume for contradiction that there exists a state sc ∈ Rc such that sc 6=

state(ac,Mc) for all ac ∈ Bc. Due to the definition of Mc, we either have sc ∈ S,
sc = s(R′,B′) for some EC (R′, B′) ∈ EC, or sc ∈ {s+, s−}. The third case immediately
leads to a contradiction, since Bc ⊆ Act and thus a+, a− /∈ Bc. In the first case, we have
that sc /∈ Ri for any i, thus Av(sc) = Avc(sc) ⊆ Actc. Hence, any action a of this state con-
tained in the EC (R, B) is still available in the collapsed MDP and thus also contained in the
EC (Rc, Bc). The second case implies, by definition of Rc = collapsed(R), that there exists
an EC (Ri, Bi) ∈ EC such that Ri ∩R 6= ∅. Recall that Avc(s(Ri,Bi)) =

⋃
s∈Ri

Av(s) \Bi.
The case assumption is thus equivalent to Bc ∩ (

⋃
s∈Ri

Av(s) \ Bi) = ∅. Inserting the
definition of Bc and Actc yields

B ∩ (Act \BEC) ∩ (
⋃

s∈Ri
Av(s) \Bi) = B ∩ (

⋃
s∈Ri

Av(s) \Bi) =⋃
s∈Ri∩R

Av(s) ∩B \Bi = ∅.

This implies that Av(s)∩B ⊆ Bi for all s ∈ Ri ∩R, i.e. all such states only have ‘internal’
actions of the EC (Ri, Bi) available in (R, B). But this implies R ⊆ Ri and B ⊆ Bi,
contradicting our assumptions. This concludes the proof of [II].

Now, we prove that (Rc, Bc) is a proper EC in Mc, i.e. that (i) Rc 6= ∅, ∅ 6= Bc ⊆⋃
sc∈Rc Av(sc), (ii) for all sc ∈ Rc, a ∈ Bc ∩ Avc(sc) we have supp(∆c(sc, ac)) ⊆ Rc, and

(iii) for all states sc, s′c ∈ Rc there is a path from sc to s′c only using actions from Bc.
For (i), we have Bc 6= ∅, otherwise Bc = B ∩Actc = ∅ implies B ⊆ BEC, contradicting

[I]. [II] yields the second part of the first condition.
To prove (ii), assume a contradiction, i.e. let sc ∈ Rc, a ∈ Bc ∩ Avc(sc) such that

s′c ∈ supp(∆c(sc, ac)) \Rc. Let s = state(ac,M) (implying sc = collapsed(s)). Again, we
proceed by a case distinction, this time on the successor s′c. If s′c ∈ S, we have that
s′c ∈ supp(∆(s, ac)), since s ∈ R and ac ∈ B and (R, B) is an EC. Further, ∆c(sc, ac, s′c) =
∆(sc, ac, s′c), thus s′c ∈ supp(∆c(sc, ac)), contradicting the assumption. If instead s′c =
s(Ri,Bi), then there exists a state s′ ∈ supp(∆(s, ac)) ∩Ri by definition of ∆c. But then
s(Ri,Bi) ∈ Rc by definition of Rc, also yielding a contradiction.

Finally, to show (iii), we can directly apply Lemma 8 to obtain the required path as
follows. Let sc, s′c ∈ Rc two states and pick two arbitrary s, s′ ∈ R with collapsed(s) = sc

and collapsed(s′) = s′c. Since (R, B) is an EC, there exists a finite path % from s to s′,
using only actions of B. By Lemma 8, we get a path %c from sc to s′c using only actions

26

4 Complete Information – General Case

from B ∩Actc = Bc, concluding the proof of Case 1.

As expected, the corresponding reverse statement holds true, too, i.e. every EC in the
collapsed MDP yields a corresponding EC in the original MDP.

Lemma 11. For all ECs (Rc, Bc) in Mc with s+, s− /∈ Rc we have that (R, B) with
R = states(Rc) and B = Bc ∪

⋃
s(Ri,Bi)∈Rc Bi is an EC in M.

Proof. Fix an EC (Rc, Bc) in Mc and set R = states(Rc) and B = Bc ∪
⋃

s(Ri,Bi)∈Rc Bi.
We need to prove that (R, B) is an EC in M. Clearly, R and B are non-empty. We show
that R =

⋃
a∈B state(a,M). For any s ∈ R, there exists a sc ∈ Rc such that s ∈ states(sc)

by definition of R. If s = sc we have s ∈ Rc and there exists an action ac ∈ Bc ⊆ B with
state(ac,M) = s. Otherwise, there is an EC (Ri, Bi) ∈ EC with s ∈ Ri, s(Ri,Bi) ∈ Rc,
and, since (Ri, Bi) is in EC in M, there is an action a ∈ Bi ⊆ B with state(a,M) = s.
Similarly, for any action a ∈ B we have that state(a,M) ∈ R by analogous reasoning.

It remains to show that (i) for all s ∈ R, a ∈ B ∩ Av(s) we have supp(∆(s, a)) ⊆ R,
and (ii) for all states s, s′ ∈ R there is a finite path from s to s′ only using actions from B.
For (i), we again assume contradiction, i.e. there are states s ∈ R, s′ ∈ S and an action
a ∈ Av(s) ∩ B such that s′ ∈ supp(∆(s, a)) \ R. We again proceed by case distinctions,
but now first on a. If a ∈ Bc, then supp(∆c(collapsed(s), a)) ⊆ Rc, since (Rc, Bc) is an
EC. By definition of ∆c, collapsed(s′) ∈ supp(∆c(collapsed(s), a)). Together, this implies
s′ ∈ R, contradiction. If instead a ∈ Bi for some EC (Ri, Bi) ∈ EC, then s, s′ ∈ Ri ⊆ R,
contradiction. To prove (ii), we can directly apply Lemma 9 to a path from collapsed(s)
to collapsed(s′) in (Rc, Bc), yielding a path from s to s′ in (R, B).

The previous statement implies that if we collapse a MEC of the original MDP, then
there can be no EC in the collapsed MDP containing the MEC representative state.

Lemma 12. Let {(R′
i, B′

i)}mi=1 ⊆ EC ∩MEC(M) be some MECs of M in EC. Then, we
have that s(R′

i,B
′
i) /∈ Rc for any EC (Rc, Bc) in Mc.

Proof. Assume there is such an EC (Rc, Bc) with s(R′
i,B

′
i) ∈ Rc. Lemma 11 yields an EC

(R, B) with R′
i ⊆ R, B′

i (B, contradiction to (R, B) being a MEC in M.

Observe that the statement of Lemma 12 does not hold for any EC (R′
i, B′

i) ∈ EC, since
there might be a larger EC containing s(R′

i,B
′
i). For example, in Figure 4.2, the collapsed

MDP has an EC containing representative states. However, if all MECs are collapsed, the
resulting collapsed MDP indeed has no ECs (except the two trivial ones).

Corollary 1. Let Mc = collapse(M, MEC(M), ŝ, T) be the collapsed MDP of M with
EC = MEC(M). Then, Mc satisfies Assumption 1.

Proof. Follows directly from the above Lemma 12.

Finally, we also get that the reachability probabilities are preserved.

27

4 Complete Information – General Case

Lemma 13. Let Mc = (Sc, Actc, Avc, ∆c) = collapse(M, EC, ŝ, T) be the collapsed MDP
of M, where EC = {(Ri, Bi)}ni=1 is any appropriate set of end components. Then, for any
state s ∈ S we have

Prmax
M,s[♦T] = Prmax

Mc,collapsed(s)[♦collapsed(T)] = Prmax
Mc,collapsed(s)[♦({s+} ∪ (T ∩ Sc))].

Proof. First, observe that Prmax
Mc,sc [♦{s+}] = 1 for any state sc = s(Ri,Bi) with Ri∩T 6= ∅ by

definition. Moreover, T ∩Sc = T \REC, i.e. all target states which are not part of an EC in
EC. A state sc ∈ collapsed(T) is of one of these two kinds. Hence, Prmax

Mc,collapsed(s)[♦({s+}∪
(T ∩ Sc))] = Prmax

Mc,collapsed(s)[♦collapsed(T)], proving the second equality.
For the first equality, we argue how to transform the witness strategies, achieving the

same overall reachability probability. Thus, let π ∈ ΠMD
M be a (memoryless deterministic)

strategy in M maximizing the probability of reaching T . We define a strategy πc on Mc

simulating π as follows. Note that πc does not have to be memoryless or deterministic.
For all states sc ∈ S, i.e. sc is not a collapsed representative, πc mimics π, i.e. πc(s) = π(s).
For the other case, namely sc = s(Ri,Bi) for some EC (Ri, Bi) ∈ EC, recall that πc is
allowed to have memory. In particular, it can remember the action a leading to sc. Clearly,
for any such action a and other action a′ ∈ Avc(sc) we can compute the probability of a′

action being the first action not in Bi under π. Then, πc simply selects a′ in sc after a

with this probability. Moreover, we also need to compute the probability of remaining
inside Ri forever, which corresponds to the probability of πc choosing remi. It is easy to
see that πc achieves the same reachability as π.

If we instead start with a strategy in the collapsed MDP πc ∈ ΠMD
Mc , we construct the

respective strategy π on M as follows. Again, on states s /∈ REC, we simply replicate the
choice of πc. On states s(Ri,Bi) the strategy πc chooses a single action ac ∈ Avc(s(Ri,Bi)),
since it is deterministic. If that action is remi, π simply picks any internal a ∈ Bi in
each state Ri. Otherwise, there exists a strategy π′ on Ri reaching state state(a,M) with
probability 1. Thus, π mimics π′ until that state is reached and then plays ac, again
achieving the same reachability.

4.2 The General BRTDP Algorithm

Now, we present our modification of Algorithm 2, using the idea of collapsing, to obtain
the general approach as shown in Algorithm 3. On top of the previously presented ideas,
the algorithm maintains a growing set of ECs and repeatedly collapses the input MDP.

The new auxiliary procedure UpdateECs is supposed to identify ECs in M. As with
SamplePairs, we only require some properties instead of giving a concrete implementation.
Essentially, UpdateECs should only grow its list of ECs and eventually identify all ECs
which are repeatedly visited by SamplePairs.

Assumption 4. Let EC1 ⊆ EC(M) be any initial set of state-disjoint ECs, ECe+1 =
UpdateECs(M, ECe) the identified ECs, and Mc

e = collapse(M, ECe, ŝ, T) the corres-
ponding collapsed MDPs. Then, for any episode e and EC (R, B) ∈ ECe, (R, B) is an EC
of M and there exists (R′, B′) ∈ ECe+1 with R ⊆ R′ and B ⊆ B′.

28

4 Complete Information – General Case

Algorithm 3 The BRTDP learning algorithm for general MDPs.
Input: MDPM, state ŝ, target set T , precision ε, initial bounds Up1 and Lo1, and initial

set of ECs EC1.
Output: ε-optimal values (l, u), i.e. V(ŝ) ∈ [l, u] and 0 ≤ u− l < ε.

1: e← 1, Mc
1 ← collapse(M, EC1, ŝ, T)

2: Up1(s+, a+)← 1, Lo1(s+, a+)←, Up1(s−, a−)← 0, Lo1(s−, a−) = 0
3: while Upe(ŝ)− Loe(ŝ) ≥ ε do
4: for all (Rj , Bj) ∈ ECe do . Initialize bounds of representative states
5: for all a ∈ Av(s(Rj ,Bj)) \ {remj} do . Copy bounds for existing actions
6: Upe(s(Rj ,Bj), a)← Upe(state(a,M), a)
7: Loe(s(Rj ,Bj), a)← Loe(state(a,M), a)
8: if Rj ∩ T = ∅ then . Set bounds for remain action
9: Upe(s(Rj ,Bj), remj)← 0, Loe(s(Rj ,Bj), remj)← 0

10: else
11: Upe(s(Rj ,Bj), remj)← 1, Loe(s(Rj ,Bj), remj)← 1
12: Upe+1 ← Upe, Loe+1 ← Loe
13: %← SamplePairs(Mc

e, ŝ, Upe, Loe, ε) . Sample a path in collapsed MDP
14: for all (s, a) ∈ % do . Update the upper and lower bounds
15: Upe+1(s, a)← ∆(s, a)〈Upe〉
16: Loe+1(s, a)← ∆(s, a)〈Loe〉
17: ECe+1 ← UpdateECs(M, ECe) . Search for new ECs
18: Mc

e+1 ← collapse(M, ECe+1, ŝ, T) . Update the collapsed MDP
19: e← e + 1
20: return (Loe(ŝ), Upe(ŝ))

Since there are only finitely many states, this assumption implies that eventually ECe

and thus Mc
e stabilizes, i.e. there exists some episode e such that for all e ≥ e we have

that ECe = ECe+1 and thus Mc
e =Mc

e+1. We call e the EC-stable episode.

Assumption 5. Let ECe and Mc
e as in Assumption 4 and assume this assumption holds.

Further, let %e ∈ FPathsMc
e be an infinite series of sets of state-action pairs in Mc

e and
define Sc

∞ =
⋂∞

k=1
⋃∞

e=k{s ∈ Sc
e | s ∈ %c

e} the set of states occurring infinitely often.(2)

Then, there exists no EC (Rc, Bc) in Mc
e with Rc ⊆ Sc

∞ except Rc = {s+} or Rc = {s−}.

4.3 Proof of Correctness

We now continue to prove correctness and termination of Algorithm 3. First, we argue
that the algorithm indeed is well-defined, i.e. it never accesses undefined values.

Lemma 14. Algorithm 3 is well-defined.

Proof. We only need to show that the states introduced by the collapsing in Lines 1 and
18 are assigned bounds before being accessed. By definition of the collapsed MDP, we add
a state for each EC together with an additional action, and the special states {s+, s−}.
The initial collapse in Line 1 adds the special states together with their corresponding
actions. Their values are initialized in the following line. Furthermore, the EC collapsing
(2)Observe that due to Assumption 4 we have Sc

∞ ⊆ Sc
e .

29

4 Complete Information – General Case

in Lines 1 and 18 adds a state s(R,B) for any EC (R, B) ∈ ECe and a corresponding rem
action. Their values are initialized in Lines 4 to 11 and not accessed prior to that.

For correctness, we again need to assume that the initial inputs are correct, similar to
Assumption 2.

Assumption 6. The given initial bounds Up1 and Lo1 are correct, i.e. Lo1(s, a) ≤ V(s, a) ≤
Up1(s, a) for all s ∈ S, a ∈ Av(s). Furthermore, the given initial set of ECs is correct, i.e.
EC1 ⊆ EC(M) and pairwise disjoint.

Lemma 15. Assume that Assumption 6 holds. Then, during any execution of Algorithm 3
we have for every episode e, all states s ∈ Se and action a ∈ Avc

e(s) that

Loe(s, a) ≤ Loe+1(s, a) ≤ V(s, a) ≤ Upe+1(s, a) ≤ Upe(s, a).

Proof. We prove that the initialization of values for newly added states is correct. The
remaining proof then is completely analogous to the proof of Lemma 3.

Since s+ is the target in Mc, setting Lo1(s+, a+) = 1 is correct. Analogously, we see
that s− has no outgoing action and thus cannot reach s+, justifying Up1(s−, a−) = 0.

The correctness of updates for the collapsed states follows from Lemma 13.

Lemma 16. The result of Algorithm 3 is correct under Assumption 6, i.e. (i) 0 ≤ u− l < ε,
and (ii) V(ŝ) ∈ [l, u].

Proof. As in Lemma 4, the claims follows directly from the definition of the algorithm
and Lemma 15.

Finally, we can prove termination of our presented algorithm. The proof is very similar
to the proof of Lemma 5 and we only need to incorporate the new assumptions about
UpdateECs.

Lemma 17. Algorithm 3 terminates under Assumptions 3, 4, 5, and 6. It terminates
almost surely if Assumption 3 is satisfied almost surely.

Proof. We apply the same reasoning as in Lemma 5 until Assumption 1 is applied in the
final part of the proof. Since we don’t necessarily explore all of M, Mc

e may still contain
MECs. In the proof, Assumption 1 is used only to show that SDiff ⊆ S∞ does not contain
MECs. Observe that any non-terminating execution eventually reaches an EC-stable
episode e, thus the collapsed MDP considered by the algorithm does not change. Now, S∞

in the previous proof exactly corresponds to Sc
∞ of Assumption 5, which yields that again

there is no EC in Sc
∞. Thus, we can continue to apply the previous proof’s reasoning.

Again, we get the overall soundness as a direct consequence.

Theorem 2. Assume that (almost surely) Assumptions 3, 4, 5, and 6 hold. Then
Algorithm 3 is correct and converges (almost surely).

30

4 Complete Information – General Case

4.4 Relation to Interval Iteration

In this section, we briefly argue how our BRTDP algorithm presented in Algorithm 3
generalizes both the original BRTDP algorithm of [Brá+14] and the interval iteration
algorithm of [HM14]. To this end, we give a brief overview of interval iteration. The
algorithm first identifies all MECs and constructs a quotient similar to the one we presented
in Section 4.1. Then, each state is initialized with straightforward upper and lower bounds.
These bounds then are iterated globally according to the Bellman operator. We can
emulate this behaviour by directly yielding the set of all MECs in UpdateECs and
returning Sc×Avc on each call to SamplePairs. All variants of [Brá+14] can be obtained
by choosing the appropriate path sampling heuristics for SamplePairs.

31

5 Limited Information – MDP without End Components

We adapt our approach to the setting of limited information, where we can access the
system only as a ‘black box’ and only are given some bounds on the shape of the system
(see Section 2.3). Intuitively, since we are interested in an ε-precise solution, we can
repeatedly sample the system to learn the transition probabilities with high confidence.
By adapting our previous ideas, we can enhance this approach to only learn ‘interesting’
transitions. Since we can never bound the transition probabilities with absolute certainty,
we aim for a probably approximately correct algorithm, which gives an ε-optimal solution
with probability at least 1− δ.

5.1 Definition of Limited Information

We formally define the limited information setting.

Definition 8. Let M = (S, Act, Av, ∆) be some MDP, ŝ ∈ S a starting state, and T ⊆ S

a target set. An algorithm has limited information if it can access

• the starting state ŝ,

• a target oracle for T , i.e. given a state s it can query whether s ∈ T ,

• an upper bound K of the number of states, K ≥ |S|,

• a lower bound q on the transition probabilities under any uniform strategy, 0 < q ≤
pmin = min{|Av(s)|−1 ·∆(s, a, s′) | s ∈ S, a ∈ Av(s), s′ ∈ supp(∆(s, a))},

• an oracle for the set of available actions Av, and

• a successor oracle succ, which given a state-action pair yields a successor state,
sampled according to the underlying, hidden probability distribution ∆.

To solve this problem, we combine the BRTDP approach with delayed Q-learning (DQL)
[Str+06]. In essence, DQL temporarily accumulates sampled values for each state-action
pair and only attempts an update after a certain delay, i.e. after enough samples have
been gathered for a particular pair. Intuitively, with a large enough delay, the average
of the sampled values is close to the true average with high confidence. Moreover, the
attempted update is only successful if the value is changed by at least some margin. If
instead the update fails, another update is only allowed if any other value in the system
has changed significantly. This way, we can bound the total number of attempted updates
and thus control the overall probability of any ‘wrong’ update occurring. We explain all
these ideas in more detail later on.

32

5 Limited Information – MDP without End Components

ŝ s1 s2 · · · sn
pa0 a1 a2p

1 − p

p

1 − p

p

1 − p

Figure 5.1: Example MDP to explain the choices and interpretations of some constants.

5.2 The No-EC DQL Algorithm

First, we again restrict ourselves to the case of no end components, as these pose an
additional difficulty. Thus, we assume the MDP M satisfies Assumption 1 and instead
of a target state oracle, the algorithm is explicitly given the special states s+ and s−.
We present our DQL-based approach in Algorithm 4. While it is similar in spirit to
Algorithm 2, we give a concrete instantiation of SamplePairs, since this setting needs
a lot of additional guarantees. Note that we only store a single value per action, while
the MDP potentially has |S| transitions per action. As such, this algorithm satisfies the
conditions of a model-free algorithm. As noted by [Str+06], the term ‘model-free’ has no
standardized definition, and we instead give an intuitive explanation. Namely, that the
algorithm’s space complexity is asymptotically smaller than the model, thus algorithm is
‘free’ of knowledge of the model.

The algorithm contains several auxiliary variables. Most are values kept for each state-
action pair, and separate for both the upper and lower bound. We give a brief intuition
for each variable, where ◦ ∈ {Up, Lo} and (s, a) is a state-action pair in M:

• t: The number of steps the algorithm took so far, increased by 1 after each iteration
of the main loop, as already mentioned in the preliminaries.

• st, at, s′
t: The state, action, and the sampled successor state in step t, respectively.

• Upt(s, a) and Lot(s, a): The (estimated) upper and lower bounds for the state-action
pair (s, a) at step t. Note that in contrast to the previous algorithm, the upper and
lower bounds are updated at each step instead of each episode.

• learn◦
t (s, a): A three-valued flag (yes, once, or no) indicating whether the algorithm

currently tries to learn and update the ◦-bounds for (s, a). The meaning of once
is explained later on. We additionally use the Decrease function for convenience,
which is defined by yes 7→ once, once 7→ no, and no 7→ no.

• count◦
t (s, a): The number of times a value for (s, a) was experienced. When

count◦
t (s, a) is large enough, we can attempt an update with sufficient confidence.

• acc◦
t (s, a): The accumulated sampled values of the last count◦

t (s, a) visits to (s, a).
We want acc◦

t (s, a)/count◦
t (s, a) to approximate the true ◦-bound.

Moreover, the algorithm contains the two constants ε and m. We define their value (and
the value of another constant, used for readability) as follows.

ε = ε

2 ·
p

|S|
min

3|S| ξ = 2|Act|
(

1 + |Act|
ε

)
m = 1

2ε2 ln
(8

δ
ξ

)

33

5 Limited Information – MDP without End Components

Algorithm 4 The DQL learning algorithm for MDPs without ECs.
Input: Inputs as given in Definition 8 satisfying Assumption 1, special states s+, s−,

precision ε, and confidence δ.
Output: Values (l, u) which are ε-optimal, i.e. V(ŝ) ∈ [l, u] and 0 ≤ u − l < ε, with

probability at least 1− δ.
1: Up1(·, ·)← 1, Lo1(·, ·)← 0, Up1(s−, ·)← 0, Lo1(s+, ·)← 1
2: for ◦ ∈ {Up, Lo} do
3: learn◦

1(·, ·)← yes, acc◦
1(·, ·)← 0, count◦

1(·, ·)← 0
4: e← 1, t← 1

5: while Upt(ŝ)− Lot(ŝ) ≥ ε do
6: for s ∈ S do MaxAe(s)← arg maxa∈Av(s) Upt(s, a)
7: st ← ŝ
8: while st /∈ {s+, s−} do . Experience the current learning episode
9: at ← sampled uniformly from MaxAe(st) . Pick an action

10: s′
t ← succ(st, at) . Query successor oracle

11: . Update bound estimates
12: for ◦ ∈ {Up, Lo} do
13: if learn◦

t (st, at) 6= no then
14: count◦

t+1(st, at)← count◦
t (st, at) + 1

15: acc◦
t+1(st, at)← acc◦

t (st, at) +©t(s′
t)

16: . Learn upper bounds
17: if countUp

t+1(st, at) = m then . Attempt update of Up
18: if accUp

t+1(st, at)/m < Upt(st, at)− 2ε then
19: Upt+1(st, at)← accUp

t+1(st, at)/m + ε . Successful update
20: learnUp

t+1(·, ·)← yes
21: else
22: learnUp

t+1(st, at)← Decrease(learnUp
t (st, at)) . Failed update

23: countUp
t+1(st, at)← 0, accUp

t+1(st, at)← 0

24: . Learn lower bounds
25: if countLo

t+1(st, at) = m then . Attempt update of Lo
26: if accLo

t+1(st, at)/m > Lot(st, at) + 2ε then
27: Lot+1(st, at)← accLo

t+1(st, at)/m− ε . Successful update
28: learnLo

t+1(·, ·)← yes
29: else
30: learnLo

t+1(st, at)← Decrease(learnLo
t (st, at)) . Failed update

31: countLo
t+1(st, at)← 0, accLo

t+1(st, at)← 0

32: st+1 ← s′
t, t← t + 1 . Increase step counter

33: e← e + 1 . Increase episode counter
34: return (Lot(ŝ), Upt(ŝ))

34

5 Limited Information – MDP without End Components

We call ε the update step (the smallest update considered by the algorithm), ξ the update
count (the maximal possible number of update attempts, mainly introduced for readability),
and m the update delay (the number of steps between updates). These three constants are
used throughout this and the following section. Note that the update delay m is closely
related to the worst-case mixing rate of the MDP, i.e. how fast information propagates
through the system. This is illustrated in Figure 5.1. In order to propagate any information
about state sn to the initial state ŝ, we need |S| steps. Moreover, only a fraction p|S| of
the information is propagated after this many steps. Intuitively, this means that we need
to visit a state-action pair often enough, i.e. m times, before an update to ensure that
relevant information has propagated already. Dually, if a state-action pair was visited
often enough and new information does not differ from the previous information by more
than ε, there is no new information to be propagated and we assume that the values of
this state-action pair are converged.

Inside the main loop, the algorithm repeats two steps to obtain a path. First, an action
maximizing the upper bounds (at the beginning of the episode) is randomly picked. More
precisely, we again consider the set MaxAe(s) := arg maxa∈Av(s) Upte(s, a) and uniformly
select an action thereof. To obtain the successor, we query the successor oracle with the
given action to obtain the successor s′. In other words, in episode e the algorithm samples
a path in the MDP using a memoryless strategy randomizing uniformly over MaxAe(s)
in each state. We call this strategy the sampling strategy πe(s, a) := |MaxAe(s)|−1 if
a ∈ MaxAe(s) and 0 otherwise. We will later on introduce the upper bound maximizing
strategy πt, which selects among Up-optimal actions at the current step t. Note that if the
algorithm follow this strategy πt while sampling, the samples would not be obtained from
a memoryless strategy in general, since an update might happen while sampling and thus
change the strategy. One might be tempted to solve this issue by first sampling a path
until s+ or s− is reached and then propagating the values. However this path might be of
exponential size; this already occurs for the structurally simple example in Figure 5.1.

After sampling a tuple (s, a, s′), the algorithm learns from this ‘experience’. It does so
by learning upper and lower bounds separately, depending on the respective learn flags,
which are explained later. In case one of the bounds should be learned (learn◦

t (s, a) 6= no),
the accumulator is updated with the newly observed values, i.e. the respective bound of
the successor s′. Furthermore, if the algorithm has gathered enough information, i.e. this
pair has been experienced m times, an update of (s, a)’s estimate is attempted. Note
that the update attempt may only happen when the respective learn is yes or once. By
choosing m large enough, the information we gathered about the bounds of (s, a) is a
faithful approximation of the true expected value over its successors. If the newly learned
estimate, i.e. the average over the last m experiences of (s, a), significantly differs from
the current estimate stored in Up or Lo, the current estimates are updated conservatively.
If instead this new estimate is close to the current estimate, the algorithm marks this
state-action pair as (potentially) converged by ‘decreasing’ its learn flag, as specified by
the Decrease function.

The learned bounds of a particular pair depend on the bounds of other state-action
pairs. In particular, whenever some ◦-bound is changed anywhere, we may need to re-learn

35

5 Limited Information – MDP without End Components

the values for other state-action pairs. This is taken care of by globally resetting the learn
flags to yes in Lines 20 and 28. This is the main difference to the subsequent algorithm
[AKW19], where the samples are used instead to learn upper and lower bounds on the
transition probabilities and the actual values are propagated according to these bounds,
trading memory for speed of convergence.

The need for the intermediate value once of learn arises from the asynchronicity of the
updates. Suppose an update of some pair (s, a) succeeds and we reset all learn values to
yes. However, for some other state-action pair (s′, a′) we are very close to an update, too.
Then, the values which will be used for an attempted update of (s′, a′) were mostly learned
before the update of (s, a). However, if for example s is a successor of (s′, a′), the values of
(s′, a′) may be influenced significantly by the update of (s, a). Hence, we need to learn the
value of (s′, a′) once more in order to be on the safe side. A different solution approach
would be to simply reset all count and acc values after every successful update, however
this would be much less efficient: If we again consider the above example, it might be the
case that the values we gathered for (s′, a′) before the update of (s, a) already are sufficient
for a successful update, discarding them would slow down convergence drastically.

5.3 Proof of Correctness

We now prove that the result returned by Algorithm 4 is probably approximately correct.
We first prove correctness of the result by showing that the computed bounds are faithful
upper and lower bounds in Lemma 21. However, we cannot guarantee that this always
the case due to statistical outliers. Thus we first obtain bounds on the probability of
these outliers. Then, in order to prove termination with high probability, we argue that
by our choice of constants the propagation of values is probably correct. This means that
whenever we update the bounds of a state-action pair (s, a), the updated value is close to
the true average under ∆(s, a). Finally, we show that with high probability an update
will occur as long as the bounds are not ε-close.

Lemma 18. The number of successful updates of Up and Lo is bounded by |Act|
ε each.

Proof. Let a ∈ Act be some action and s = state(a,M) the associated state. The upper
bound of (s, a) is initialized to 1 or 0, similar for the lower bound. Whenever Upt(s, a) is
updated in Line 19, its value is decreased by at least ε: We have that accUp

t (s, a)/m <

Upt(s, a)− 2ε, hence accUp
t (s, a)/m + ε < Upt(s, a)− ε. Thus, Upt+1(s, a) < Upt(s, a)− ε.

Analogously, Lot(s, a) is always increased by at least ε whenever updated.
Moreover, accUp

t (s, a) ≥ 0 and accLo
t (s, a) ≤ m by initialization and update of these

values, hence we never set Upt(s, a) to a negative value and Lot(s, a) is always smaller
or equal to 1. Consequently, we change the value of Upt(s, a) and Lot(s, a) at most 1

ε

times and there are at most |Act|
ε successful updates to the upper and lower bounds,

respectively. Note that we do not necessarily have Upt(s, a) ≤ Lot(s, a) for all executions
of the algorithm, hence there are at most |Act|

ε updates for each of the bounds.

Observe that this implies that for every execution, eventually there will be no more
successful updates of Up and the sampling strategy πe does not change. This fact will be

36

5 Limited Information – MDP without End Components

used in some of the subsequent proofs. Moreover, we can use the above result to show
that similarly, the number of attempted updates is bounded.

Lemma 19. The number of attempted updates of the upper bounds Up and lower bounds
Lo is bounded by ξ = 2|Act|(1 + |Act|

ε), respectively.

Proof. Let (s, a) ∈ S × Av be a state-action pair. Suppose an update of Upt(s, a) is
attempted at step t, i.e. at = a, countt(s, a) = m − 1, and learnUp

t (s, a) 6= no. Then,
either the update is successful or learnUp

t+1(s, a) is updated with Decrease. The learn
flag is only set to yes again if some other upper bound is successfully updated. Analogous
reasoning applies to the lower bounds.

By Lemma 18, there are at most |Act|
ε successful updates to either bounds in total. If

an update of a particular state-action pair is attempted, it either succeeds or fails. In the
latter case, at most one more update of this state-action pair will be attempted until an
other update succeeds. Hence, for a particular state-action pair (s, a) we have in the worst
case two attempted Up-updates after every successful Up-update (of any pair). Together,
there are at most 2 + 2 |Act|

ε (two more attempts can occur after the last successful update).
Since there are |Act| state-action pairs in total, the statement follows.

Assumption 7. Suppose an Up-update of the state-action pair (s, a) is attempted at
step t. Let k1 < k2 < . . . < km = t be the steps of the m most recent visits to (s, a).
Then 1

m

∑m
i=1 V(s′

ki
) ≥ V(s, a) − ε. Analogously, for an attempted Lo-update, we have

1
m

∑m
i=1 V(s′

ki
) ≤ V(s, a) + ε.

Lemma 20. The probability that Assumption 7 is violated during the execution of
Algorithm 4 is bounded by δ

4 .

Proof. We show that the claim for the upper bound is violated with probability at most δ
8 .

The lower bound part follows analogously and the overall claim via union bound.
Let (s, a) and ki as in Assumption 7, i.e. an Up-update of (s, a) is attempted at step

km = t. First, observe that due to the Markov property, the successor state under (s, a)
does not depend on the algorithm’s execution. Hence, the states s′

ki
, i.e. the successor

states after each visit of (s, a), are distributed i.i.d. according to the underlying probability
distribution ∆(s, a). Define Yi = V(s′

ki
). Clearly, Yi are i.i.d., since the actual value of a

state V(s) is independent of the algorithm’s execution. Moreover, E[Yi] = V(s, a), since
V satisfies the fixed point conditions V(s, a) = ∆(s, a)〈V〉. Define the empirical average
Y = 1

m

∑m
i=1 Yi. Observe that E[Y] = 1

m

∑m
i=1 E[Yi] = V(s, a). By the Hoeffding bound

[Hoe94] we have that

PA [E [Y]− Y > ε] ≤ e−2mε2 = δ

8 · ξ
−1

By reordering, we obtain that PA[V(s, a)− ε > 1
m

∑m
i=1 V(si)] ≤ δ

8 · ξ
−1. Consequently, by

37

5 Limited Information – MDP without End Components

employing the union bound and Lemma 19, we see that

PA

[
‘ 1
m

∑m

i=1
V(ski

) < V(s, a)− ε for some k1’
]

= PA

[⋃
k1

‘ 1
m

∑m

i=1
V(ski

) < V(s, a)− ε for k1’
]

≤
∑

k1

δ

8 · ξ
−1 ≤ δ

8 .

Lemma 21. Assume that Assumption 7 holds. Then, during any execution of Algorithm 4
we have for every step t, all states s ∈ Se and action a ∈ Ave(s) that

Lot(s, a) ≤ Lot+1(s, a) ≤ V(s, a) ≤ Upt+1(s, a) ≤ Upt(s, a).

Proof. First, by definition of the algorithm we clearly have that Up can only decrease and
Lo can only increase. It remains to show that Lot(s, a) ≤ V(s, a) ≤ Upt(s, a). We proceed
by induction on the step t. For t = 0, the statement clearly holds, since Up1(s, a) = 1 for
all states except the special state s−, which by assumption cannot reach the target s+.
Analogously, the statement holds for Lo1(s, a). Now, fix an arbitrary step t. We have that
Upt′(s, a) ≥ V(s, a) for all steps t′ ≤ t (IH). Assume that (s, a) is the state-action pair
sampled at step t. If no successful update takes place there is nothing to prove, since the
values of Up and Lo do not change. Otherwise, Assumption 7 is applicable and we get

Upt+1(s, a) = 1
m

∑m

i=1
Upki

(ski
) + ε

[IH]
≥ 1

m

∑m

i=1
V(ski

) + ε ≥ V(s, a).

Analogously, we have Lot+1(s, a) ≤ V(s, a).

This gives us correctness of the returned result with high confidence if the algorithm
terminates. It remains to show that the algorithm also terminates with high probability.

To this end, we introduce the upper bound maximizing strategy πt which selects in each
state s uniformly among all actions maximal with respect to the current upper bounds,
i.e. Upt(s, ·). This allows us to reason about the current value at step t. Note that this
strategy differs from the sampling strategy πe, since πt might change during an episode.
However, once there are no updates to upper bounds, we have that πe = πt. We use
this fact in the final convergence proof. Once the two strategies align, we can transfer
properties proven with respect to πt to the actual sampling behaviour of the algorithm.

Using this strategy, we define the set of nearly converged state-action pairs.

Definition 9. For every step t, define KUp
t ,KLo

t ⊆ S ×Av by

KUp
t := {(s, a) | Upt(s, a)−∆(s, a)〈πt[Upt]〉 ≤ 3ε} and

KLo
t := {(s, a) | ∆(s, a)〈πt[Lot]〉 − Lot(s, a) ≤ 3ε},

i.e. all state-action pairs whose Up- or Lo-value is close to the respective value of its
successors under πt. If (s, a) ∈ KUp

t , we say that (s, a) is Up-converged at step t, analogously
(s, a) ∈ KLo

t is called Lo-converged at step t.

38

5 Limited Information – MDP without End Components

The approach for the convergence proof is to show that (with high probability) (i) if
an update of some bound fails, the current bound is consistent with its successors, i.e.
the respective pair is converged, and (ii) we visit non-converged pairs only finitely often.
These two facts then are combined non-trivially to obtain the convergence result.

Lemma 22. We have for every step t and state s that

πt[Upt](s) = Upt(s) and πt[Lot](s) ≤ Lot(s).

Moreover, if (s, a) /∈ KUp
t , then (s, a) /∈ KUp

t′ for all t′ > t until an Up-update of (s, a)
succeeds. If no more updates of upper bounds take place, the analogous statement holds for
the lower bounds, too.

Proof. Since the strategy πt maximizes the upper bound we have

πt[Upt](s) =
∑

a∈Av(s)
πt(s, a) · Upt(s, a) = maxa∈Av(s)Upt(s, a) = Upt(s).

On the other hand, we trivially have that πt[Lot](s) ≤ Lot(s), as Lot(s) is the maximum
over all actions.

For the second claim, recall that Up-values can only decrease. If (s, a) /∈ KUp
t , we have

Upt(s, a) > 3ε + ∆(s, a)〈πt[Upt]〉 = 3ε + ∆(s, a)〈Upt〉. Since (i) Upt(s, a) = Upt+1(s, a)
unless a successful Up-update of (s, a) occurs and (ii) Upt(s) ≥ Upt+1(s) for all states s,
we obtain the claim.

The lower bound statement is proven analogously, noting that once upper bounds remain
fixed the only way to change KLo

t is a successful update of some lower bound.

Assumption 8. Suppose an update of the upper bound (lower bound) of the state-action
pair (s, a) is attempted at step t. Let k1 < k2 < . . . < km = t be the steps of the m most
recent visits to (s, a). If (s, a) is not Up-converged (Lo-converged) at step k1, the update
at step t is successful.

Intuitively, this assumption says that whenever the bound for a state-action pair is
significantly different from its successors and we visit that pair often enough, we obtain
a significantly better estimate. We cannot guarantee this surely due to outliers, but we
bound the probability of this assumption being violated using our choice of the delay m.

Lemma 23. The probability that Assumption 8 is violated during the execution of
Algorithm 4 is bounded by δ

4 .

Proof. As in Lemma 20, we prove that such an attempted update of the upper bounds fails
with probability at most δ

8 . The same bound can be obtained for the lower bound variant
with a mostly analogous proof. Throughout the proof, we point out the key differences
between the two proofs. The overall result follows using the union bound.

Let (s, a) and ki as in Assumption 8, i.e. (s, a) /∈ KUp
k1

and an update of the upper bound
is attempted at step t (I). Define Xi = πk1 [Upk1](s′

ki
). Observe that all Xi are defined

39

5 Limited Information – MDP without End Components

using Upk1 and πk1 (instead of Upki
and πki

) and thus are i.i.d. Again, we define the
empirical average X = 1

m

∑m
i=1 Xi and apply the Hoeffding bound to obtain

PA[X − E[X] ≥ ε] ≤ e−2mε2 = δ

8 · ξ
−1

.

Since the Xi are i.i.d., we have that E[X] = E[Xi] for all 1 ≤ i ≤ m, in particular
E[X] = E[X1]. Thus, the probability that X − E[X1] ≥ ε is at most δ

8 · ξ
−1 (II). For the

lower bound proof, we analogously define Xi = πk1 [Lok1](s′
ki

) and prove that E[X1]−X ≥ ε

with the same probability.
Now, we show that if X −E[X1] < ε the update at step t will be successful (III). Recall

that an update is successful when the m most recent samples significantly differ from the
currently stored value, i.e. when the currently stored value Upt(s, a) is significantly larger
than the newly learned value. We have that

Upt(s, a)− 1
m

∑m

i=1
Upki

(s′
ki

) ≥ Upt(s, a)− 1
m

∑m

i=1
Upk1(s′

ki
) (5.1)

= Upt(s, a)− 1
m

∑m

i=1
πk1 [Upk1](s′

ki
) (5.2)

> Upt(s, a)− E[X1]− ε (5.3)

= Upk1(s, a)− E[X1]− ε (5.4)

= Upk1(s, a)−∆(s, a)〈πk1 [Upk1]〉 − ε (5.5)

> 2ε. (5.6)

Inequality 5.1 follows from the fact that Up-values can only decrease over time by definition
of the algorithm. Equality 5.2 follows directly from Lemma 22. Inequality 5.3 follows from
the above derivation. Equality 5.4 follows from the the fact that Upki

(s, a) = Upk1(s, a) for
all 1 ≤ i ≤ m, since an update is attempted at step km = t (and thus not prior to that point).
Consequently, there can be no update attempts in the previous m−1 visits and consequently
the value of Upki

(s, a) does not change between k1 and km. Equality 5.5 follows directly
from the definition of X1. Finally, Inequality 5.6 follows from the assumption that (s, a)
is not Up-converged at step k1 [I], i.e. Upk1(s, a)−∆(s, a)〈πk1 [Upk1]〉 > 3ε.

For the lower bound, we prove a similar result:

1
m

∑m

i=1
Loki

(s′
ki

)− Lot(s, a) ≥ 1
m

∑m

i=1
Lok1(s′

ki
)− Lot(s, a)

≥ 1
m

∑m

i=1
πk1 [Lok1](s′

ki
)− Lot(s, a)

> E[X1]− ε− Lot(s, a)

= E[X1]− ε− Lok1(s, a)

= ∆(s, a)〈πk1 [Lok1]〉 − ε− Lok1(s, a)

> 2ε.

The only major difference lies in the second inequality (corresponding to Equality 5.2),
where we instead use the fact that πt[Lot](s) ≤ Lot(s).

40

5 Limited Information – MDP without End Components

To conclude the proof, we extend the above argument to all steps k1 satisfying the
preconditions of the assumption. By Lemma 19, the number of attempted updates to Up
and Lo is bounded by ξ, respectively. Clearly, the number of such steps k1 is bounded by
the number of attempted updates (IV). Together, we get that

PA [‘Assumption 8 is violated for Up’]

= PA
[⋃

k1
‘k1 satisfies condition [I], but the Up-update fails’

]
≤
∑

k1
PA [‘k1 satisfies condition [I], but the Up-update fails’]

[III]
≤
∑

k1
PA [‘X − E[X1] ≥ ε for k1’]

[II]
≤
∑

k1

δ

8 · ξ
−1 [IV]
≤ δ

8 .

Lemma 24. Assume that Assumption 8 holds. If an attempted Up-update of (s, a) at step
t fails and learnUp

t+1(s, a) = no, then (s, a) ∈ KUp
t+1. If no more updates of upper bounds

take place, the analogous statement holds for the lower bounds, too.

Proof. We prove the statement for the upper bound, with the corresponding lower bound
statement following analogously. Assume an unsuccessful Up-update of (s, a) occurs at
step t and let k1 < k2 < . . . < km = t be the m most recent visits to (s, a). We consider
the following cases:

1. If (s, a) /∈ KUp
k1

, then by Assumption 8 the Up-update of (s, a) at step t will be
successful and there is nothing to prove.

2. We have (s, a) ∈ KUp
k1

and there exists i ∈ {2, . . . , m} such that (s, a) is not Up-
converged at step ki. It follows that there must have been a successful update of
some Up-value between steps k1 and km, say step t′. By Line 20, learnUp

t′+1(s, a) is
set to yes and there is nothing to prove.

3. For the last case, we have that for all i ∈ {1, . . . , m} that (s, a) is Up-converged at
step ki, particularly (s, a) ∈ KUp

km
= KUp

t . As the attempt to update the Up-value of
(s, a) at step t was unsuccessful, we have that KUp

t = KUp
t+1.

For the proof of the lower bound statement, observe that KLo
t may be changed by a

successful update of Upt. Hence, the above reasoning can only be followed once upper
bounds do not change.

Lemma 25. Assume that Assumption 8 holds. Then, there are at most 2m · |Act|
ε visits to

state-action pairs which are not Up-converged. Moreover, once the upper bounds are not
updated any more, there are at most 2m · |Act|

ε visits to state-action pairs which are not
Lo-converged.

Proof. We show that whenever a state-action pair (s, a) is not Up-converged at step t,
then in at most 2m more visits to (s, a) a successful Up-update will occur. Assume that
(s, a) is visited at step t and it is not Up-converged. We distinguish two cases.

41

5 Limited Information – MDP without End Components

1. learnUp
t (s, a) = no: This implies that the last attempted Up-update of (s, a) was not

successful. Let t′ be the step of this attempt, t′ < t. We have learnUp
t′+1(s, a) = no.

By Lemma 24, we have that (s, a) ∈ KUp
t′+1. Since we assumed (s, a) /∈ KUp

t , there
was a successful update of some Up-value between t′ and t, otherwise we would have
KUp

t′+1 = KUp
t . Consequently, we have learnUp

t+1(s, a) = yes. By Assumption 8 the
next attempted to Up-update of (s, a) will be successful. This attempt will occur
after m more visits to (s, a).

2. learnUp
t (s, a) 6= no: By construction of the algorithm, we have that in at most

m− 1 more visits to (s, a), an Up-update of (s, a) will be attempted. Suppose this
attempt takes place at step t′, t′ ≥ t and the most m recent visits to (s, a) prior to
t′ happened at steps k1 < k2 < . . . < km = t′. Note that we do not necessarily have
that t = k1, but surely t ∈ {k1, . . . , km}. If the Up-update at step t′ succeeds, there
is nothing to prove, hence assume that this update fails. There are two possibilities:

a) If (s, a) is not Up-converged at step k1, then by Assumption 8 the Up-update
at step t′ will be successful, contradicting the assumption.

b) If instead (s, a) is Up-converged at step k1, we have that KUp
k1
6= KUp

t , since we
assumed that (s, a) /∈ KUp

t . Consequently, there was a successful Up-update
of some other state-action pair at some step t′′ with k1 < t′′ ≤ t and thus
learnUp

t′′+1(s, a) = yes. Moreover, we necessarily have that no Up-update of
(s, a) is attempted after t′′. Together, we have that learnUp

t′+1(s, a) = once even
though the attempted Up-update at step t′ fails. By Lemma 22, we have that
(s, a) /∈ KUp

t′+1, as (s, a) /∈ KUp
t and no successful Up-update of (s, a) occurred

between t and t′. By Assumption 8 the next attempt to update Up-value of
(s, a) will succeed.

By Lemma 18, the number of successful Up-updates is bounded by |Act|
ε , and by the

previous arguments we have that if for some t the pair (s, a) is not Up-converged then in at
most 2m more visits to (s, a), there will be a successful update to Up(s, a). Hence, there
can be at most 2m · |Act|

ε steps t such that the current state-action pair is not Up-converged.
Once no more Up-updates take place, πt remains fixed and KLo

t only changes due to
successful updates of the lower bounds, yielding an analogous proof for Lo.

As a last auxiliary lemma, we show that whenever the probability of reaching a non-
converged pair is low, we necessarily are close to the optimal value.

Lemma 26. Assume that Assumption 7 holds and fix a step t. Then, we have for every
state s ∈ S that

Upt(s)−3ε · |S|p−|S|
min −Prπt

M,s[♦KUp
t] ≤ Prπt

M,s[♦{s+}] ≤ Lot(s)+3ε · |S|p−|S|
min +Prπt

M,s[♦KLo
t].

Proof. The central idea of this proof is to apply Lemma 46 twice, with X(s, a) = Upt(s, a)
and X(s, a) = Lot(s, a), respectively.

42

5 Limited Information – MDP without End Components

For the first application, set κl = −1, κu = 3ε, and π = πt. Then, K = KUp
t and

Prπt
M′,s[♦{s+}]− Prπt

M,s[♦KUp
t] ≤ Prπt

M,s[♦{s+}] (5.7)

since M′ and M are equivalent on KUp
t . The lemma then yields that

πt[Upt](s)− Prπt
M′

t,s[♦{s+}] ≤ 3ε · |S|p−|S|
min . (5.8)

Recall that πt is a strategy randomizing uniformly over some of the available actions
in each state, hence δmin(π) is at least pmin. For the second application, we dually set
κl = −3ε, κu = 1, and π = πt. Again, we have K = KLo

t and

Prπt
M,s[♦{s+}] ≤ Prπt

M′,s[♦{s+}] + Prπt
M,s[♦KLo

t]. (5.9)

The lemma gives us

Prπt
M′

t,s[♦{s+}]− πt[Lot](s) ≤ 3ε · |S|p−|S|
min . (5.10)

Now, recall that πt[Upt](s) = Upt(s) and πt[Lot](s) ≤ Lot(s) (I) due to Lemma 22.
Together, we have

Upt(s)− 3ε · |S|p−|S|
min

[I]= πt[Upt](s)− 3ε · |S|p−|S|
min

(5.8)
≤ Prπt

M′
t,s[♦{s+}],

Prπt
M′,s[♦{s+}]− Prπt

M,s[♦KUp
t]

(5.7)
≤ Prπt

M,s[♦{s+}]
(5.9)
≤ Prπt

M′,s[♦{s+}] + Prπt
M,s[♦KLo

t], and

Prπt
M′

t,s[♦{s+}]
(5.10)
≤ 3ε · |S|p−|S|

min + πt[Lot](s)
[I]
≤ 3ε · |S|p−|S|

min + Lot(s).

Combining all the above statements now yields the overall result.

Theorem 3. Algorithm 4 terminates and yields a correct result with probability at least
1− δ after at most O(POLY(|Act|, p

−|S|
min , ε−1, ln δ)) steps.

Proof. We only consider executions where Assumptions 7 and 8 hold. By Lemmas 20 and
23 together with the union bound, this happens with probability at least 1− δ

2 .
Now, observe that if the algorithm terminates at some step t, we have that Upt(ŝ)−

Lot(ŝ) < ε by definition. With Lemma 21, we have Lot(ŝ) ≤ V(ŝ) ≤ Upt(ŝ) and reordering
yields the result.

We show by contradiction that the algorithm terminates for almost all considered
executions. Thus, assume that the execution does not halt with non-zero probability.
Since the MDPM satisfies Assumption 1, almost all episodes eventually visit either s+ or
s− due to Lemma 2 and thus are of finite length. This implies that almost all executions
for which the algorithm does not terminate comprise infinitely many episodes. We restrict
our attention to only those executions.

Recall that due to Lemma 19, there are only finitely many attempted updates on almost
all considered executions. Consequently, on these executions the algorithm eventually
does not change Up, since no successful updates can occur from some step t onwards.

43

5 Limited Information – MDP without End Components

This means that all following samples are obtained by sampling according to the strategy
πt. Note that both the time of convergence and the actual strategy πt depends on the
execution a. Thus, we need to employ Lemma 48—the algorithm clearly qualifies as
Markov process, since its evolution only depends on its current valuations. More precisely,
it is not difficult to see that the whole execution of the algorithm (with fixed inputs) can
be modelled as a (very unwieldy) countable Markov chain, showing that the considered
properties are measurable. In particular, they are reachability objectives on this induced
Markov chain.

Let us now consider the set of executions for which the upper bounds eventually converge
and moreover Prπt

M,ŝ[♦K
Up
t] ≥ ρ > 0 infinitely often. Assume that this set of executions

has a non-zero measure. By Lemma 48, on almost all of these executions KUp
t is also

reached infinitely often, contradicting Lemma 25. For the lower bounds, we can prove a
completely analogous statement. Consequently, Prπt

M,ŝ[♦K
Up
t]→ 0 and Prπt

M,ŝ[♦KLo
t]→ 0

on almost all considered executions.
Inserting the definition of ε, we have for a sufficiently large step t that

Upt(ŝ)− ε

2 < Upt(ŝ)− 3ε · |S|p−|S|
min − Prπt

M,ŝ[♦KUp
t]

and dually
Lot(ŝ) + 3ε · |S|p−|S|

min + Prπt
M,ŝ[♦KLo

t] < Lot(ŝ) + ε

2
for all considered executions. Thus, by Lemma 26, we have

Upt(ŝ)− ε

2 < Prπt
M,ŝ[♦{s+}] < Lot(ŝ) + ε

2 ,

i.e. Upt(ŝ)− Lot(ŝ) < ε, contradicting the assumption.
We have proven that the result is approximately correct with probability 1− δ

2 . Now,
we additionally need to prove the step bound. To this end, we first bound the number of
sampled paths and then bound the length of each path. Central to the following proof
is Lemma 25, bounding the number of visits to non-converged state-action pairs. First,
we treat the upper bounds. Observe that the probability of visiting an non-Up-converged
state-action pair either is 0 or at least p

|S|
min (due to Lemma 43). Moreover, while this

probability may fluctuate, once it reaches 0 it remains at 0, since then the sampling strategy
does not change and all pairs reachable under this strategy are Up-converged. So, in the
worst case, the probability of reaching such a pair is exactly p

|S|
min until they are visited

often enough. We model this process as a series of Bernoulli trials Xi, equalling 1 if at
least one Up-update happens while sampling the i-th path.(1) While the exact probabilities
is not independent, they are always at least as large as the success probability p := p

|S|
min

of these trials (or 0 if all reachable pairs are Up-converged). Hence, we approximate the
number of trials we need to perform until we observe at least c := 2m · |Act|

ε successes with
high probability—then, all upper bounds necessarily are converged by Lemma 25. Now, we

(1)We deliberately use i instead of e to emphasize that Xi does not operate on the probability space of
the algorithm (A, A,PA). Instead, they represent a crude under-approximation to allow for a feasible
analysis.

44

5 Limited Information – MDP without End Components

are essentially dealing with a binomially distributed variable Xn =
∑n

i=1 Xi and want to
find an n such that P[Xn ≥ c] ≥ 1− δ

4 . Since we are interested in the limit behaviour, we
can apply the de Moivre–Laplace theorem, allowing us to replace this binomial distribution
with an appropriate normal distribution. Thus, we obtain

P[Xn ≥ c] ≈ 1− Φ
(

c− np√
np(1− p)

)
,

and rearranging yields

n− 1
2 (c− np) ≈ Φ−1

(
δ

4

)
·
√

p(1− p).

For readability, we set a := Φ−1
(

δ
4

)
. Solving for n gives us

n ≈ c

p
− a

2p

√
(1− p)2a2 + 4c(1− p) + (1− p)r2

2p
.

Inserting the definitions yields that n ∈ O(POLY(|Act|, p
−|S|
min , ε−1, ln δ)). This bounds the

number of paths sampled by the algorithm. We furthermore prove that the length of
all those paths is polynomial with high probability. To this end, we employ Lemma 44.
Recall that sampling of a path stops once we reach one of the two special states s+

and s−. Due to Assumption 1, the probability of eventually reaching them is 1. Hence,
Prπe

M,ŝ[♦≤N{s+, s−}] ≥ 1 − τ , where N ≥ ln(2
τ) · |S|p−|S|

min for any sampling strategy πe

In other words, the probability of a sampled path being longer than N is at most τ .
Then, by the union bound, the probability of any of the n paths being longer than N

is at most n · τ . By choosing τ = δ
4n , this happens with probability at most δ

4 . Then,
ln(2

τ) = ln(8n) − ln(δ), i.e. the length of each path again is bounded by a polynomial
in the input values. Together, we obtain the results, since polynomials are closed under
multiplication.

45

6 Limited Information – General Case

As before, MECs pose an additional challenge, since they introduce superfluous upper
fixed points. The key difference to the full information setting is that MECs cannot be
directly identified. Instead, we identify a set of state-action pairs as an end component if
it occurs sufficiently often. By bounding the probability of falsely identifying such a set as
an end component, we can replicate the previous proof structure.

6.1 Collapsing End Components with Limited Information

Before we present the complete algorithm, we first show how we identify end components
in this section.

Definition 10. Let M = (S, Act, Av, ∆) be an MDP, ρ ∈ PathsM and i, j ≥ 0. Define

Appear(ρ, i, j) = {(s, a) ∈ S ×Av | |{k | k ≤ j ∧ %a(k) = a}| ≥ i}

as the state-action pairs which appear at least i times on the path ρ during the first j

steps. We overload the definition of Appear to also accept finite paths of sufficient length.
Moreover, we also define Appear for paths of Markov chains, which yields the states
occurring more than i times.

For notational convenience, we identify the result of Appear with the corresponding
state-action tuple (R, B) since we will use these results as candidates for end components.
If we choose i and j correctly, we can prove that Appear is an EC with high probability.

Lemma 27. Let M = (S, Act, Av, ∆) be an MDP, ŝ ∈ S an initial state, T ⊆ S a set of
target states, and π ∈ ΠMD

M a memoryless strategy on M such that Prπ
M,s[♦T] = 0 for all

s ∈ T , i.e. T is absorbing under π. Set Sπ =
⋃

s∈S supp(π(s)), κ = |Sπ| + 1, and pick
i ≥ κ. Then either Prπ

M,ŝ[♦≤2i3
T] = 1 or

Prπ
M,ŝ

[
Appi | ♦≤2i3T

]
≥ 1− 2(1 + i2) · e−(i−1) δmin(π)κ

κ · δmin(π)−κ,

where Appi = {ρ ∈ PathsM | Appear(ρ, i, 2i3) ∈ EC(M)}.

Informally, this lemma shows that, when sampling according to a memoryless strategy,
paths of sufficient length either end up in an already known set of ECs or frequently
reappearing state-action pairs also form an EC with high probability.

Proof. If Prπ
M,ŝ[♦≤2i3

T] = 1, there is nothing to prove, hence we assume the opposite, i.e.
that Prπ

M,ŝ[♦≤2i3T] > 0 (I).

46

6 Limited Information – General Case

Given an MDP, a designated initial state ŝ, and a memoryless strategy, we can construct
a finite state Markov chain which exactly captures the behaviour of the MDP under the
given strategy. We define the Markov chain Mπ = ({ŝ} ∪ Sπ, δπ), where δπ is defined as

δ(ŝ, a) = π(ŝ, a) for a ∈ supp(π(ŝ))

δ(a, a′) = ∆(state(a,M), a, state(a′,M)) · π(state(a′,M), a′).

In other words, δ(a, a′) equals the probability of reaching some state s′ after playing action
a and then continuing with action a′. As such, the paths in Mπ exactly correspond to the
paths in M following π. Furthermore, it is easy to see that each BSCC of Mπ corresponds
to an end component in M. Observe that, by definition, κ equals the number of states in
Mπ (II) and δmin(π) equals the smallest positive transition probability in Mπ (III). For
readability, we define c = exp(−δmin(π)κ/κ).

Let Appi,π ⊆ PathsMπ be the event corresponding to Appi in the Markov chain Mπ.
Informally, Appi,π denotes the set of all (infinite) paths ρ which within 2i3 steps (i) visit
all states of some BSCC at least i times, and (ii) all other states at most i− 1 times, i.e.
all paths such that Appear(ρ, i, 2i3) is a BSCC of Mπ. We now show that

PrMπ ,ŝ[Appi,π | ♦≤2i3T] ≥ 1− 2cii3 · δmin(π)−κ,

i.e. the probability of Appi,π given that T is not reached within 2i3 steps is at least
1− 2cii3 · δmin(π)−κ. Since the paths of Mπ exactly correspond to paths obtained in M
by following the strategy π, this proves the claim.

First, we show that (IV)

PrMπ ,ŝ

[
Appi,π

]
≥ 1− 2(1 + i2) · ci−1.

Let B =
⋃

R∈BSCC(Mπ) R be the set of all states in BSCCs of Mπ. We have that
PrMπ ,ŝ[♦B] = 1 by Lemma 1. We apply Lemma 44 with N = i − 1 and τ = 2ci−1.
By [II] and [III] we have

|Sπ| · ln
(2

τ

)
· δmin(π)−|Sπ | = κ · ln

(
exp

(
(i− 1) · δmin(π)κ

κ

))
· δmin(π)−κ = i− 1.

Thus PrMπ ,ŝ[♦≤i−1B] ≥ 1 − 2ci−1. In other words, an infinite path of Mπ starting in ŝ

does not visit a BSCC of Mπ within i− 1 steps with probability at most 2ci−1.
Now, let R = {s1, . . . , sn} ⊆ B be some BSCC of Mπ and fix two states si, sj ∈ R.

Since R is an BSCC, we have PrMπ ,si
[♦{sj}] = 1, and we can apply Lemma 44 again to

obtain that PrMπ ,si
[♦≤i{sj}] ≥ 1 − 2ci−1. Consequently, the probability of visiting all

states of R, one after another, with at most i − 1 steps between visiting the respective
next state, is at least 1 − n · 2ci−1. Repeating this argument, with probability at least
1− i · n · 2ci−1 ≥ 1− i · κ · 2ci−1, this round trip is successful i times in a row and has a
length of at most i · n · (i− 1) ≤ i2κ ≤ i3. Using the union bound again, we get that with
probability at least 1− 2ci−1 − iκ · 2ci−1 = 1− 2ci−1(1 + iκ) ≥ 1− 2(1 + i2) · ci−1 a path

47

6 Limited Information – General Case

of length i3 ends up in a BSCC within i− 1 steps and then visits all states of the BSCC
at least i times, proving [IV].

Let Tπ = {a ∈ Sπ | state(a,M) ∈ T} the states of Mπ corresponding to the given state
set T . Recall that we assumed that Prπ

M,s[♦T] = 0 for s ∈ T , i.e. PrM,a[♦Tπ] = 0 for all
a ∈ Tπ. Consequently, each BSCC of Mπ either is contained in Tπ or disjoint from it:
Assume that there exists a BSCC R with states a, a′ ∈ R where a ∈ Tπ and a′ /∈ Tπ. Since
R is a BSCC, we have PrMπ ,a[♦{a′}] = 1, contradicting PrMπ ,a[♦Tπ] = 0.

Due to [I], there exists at least one BSCC which is disjoint from Tπ—otherwise any run
would eventually end up in Tπ. Let s be some state in this BSCC. By construction, there
exists a path of length at most κ [II] from ŝ to s, and thus the probability of reaching
such a BSCC is bounded from below by δmin(π)κ, using [III]. Formally, we have (V)

PrMπ ,ŝ

[
♦≤2i3Tπ

]
> δmin(π)κ.

Finally, we obtain

PrMπ ,ŝ

[
Appi,π | ♦≤2i3T

] [I]= PrMπ ,ŝ

[
Appi,π ∩ ♦≤2i3T

]
/PrMπ ,ŝ

[
♦≤2i3T

]
= PrMπ ,ŝ

[
Appi,π \ ♦≤2i3

T
]
/PrMπ ,ŝ

[
♦≤2i3T

]
= (PrMπ ,ŝ

[
Appi,π

]
− PrMπ ,ŝ

[
Appi,π ∩ ♦≤2i3

T
]
)/PrMπ ,ŝ

[
♦≤2i3T

]
≥ (PrMπ ,ŝ

[
Appi,π

]
− PrMπ ,ŝ

[
♦≤2i3

T
]
)/PrMπ ,ŝ

[
♦≤2i3T

]
[IV]
≥ (1− 2ci−1(1 + i2)− (1− PrMπ ,ŝ

[
♦≤2i3T

]
))/PrMπ ,ŝ

[
♦≤2i3T

]
= (PrMπ ,ŝ

[
♦≤2i3T

]
− 2ci−1(1 + i2))/PrMπ ,ŝ

[
♦≤2i3T

]
= 1− (2ci−1(1 + i2))/PrMπ ,ŝ

[
♦≤2i3T

]
[V]
≥ 1− 2(1 + i2) · ci−1 · δmin(π)−κ.

6.2 The General DQL Algorithm

We define the general DQL algorithm in Algorithm 5. Essentially, the algorithm works
similar to the previous Algorithm 4. The main difference is that it further employs
Lemma 27 to detect whether the current sample is stuck in a yet to be discovered EC. To
this end, the algorithm introduces a small set of additional auxiliary variables, necessary
to track representative states similar to the collapsed MDP of Chapter 4. In particular,
collapsede stores the representatives of each state. Since we might discover growing ECs,
this representative might be part of another already discovered EC. Thus, we use repe to
resolve the current representative of a given state s by repeatedly applying collapsede until
a fixed point is reached. Additionally, Ze contains all states which are part of a bottom EC
without a target state. We choose the parameter i, controlling the length of each sample
and when to check for an EC, such that

|Act| · 2(1 + i2) · e−(i−1) pmin(π)|S|+1
|S|+1 · pmin(π)−(|S|+1) ≤ δ

4 and i ≥ |Act|. (6.1)

48

6 Limited Information – General Case

Algorithm 5 The DQL learning algorithm for general MDPs.
Input: Inputs as given in Definition 8, precision ε, and confidence δ.
Output: Values (l, u) which are ε-optimal, i.e. V(ŝ) ∈ [l, u] and 0 ≤ u − l < ε, with

probability at least 1− δ.
1: Initialize all variables as in Algorithm 4.
2: e← 1, t← 1
3: for s ∈ S do collapsede(s)← s

4: S1 ← S, Av1 ← Av, T1 ← T , Z1 ← ∅

5: while Upt(ŝ)− Lot(ŝ) ≥ ε do
6: for s ∈ Se do MaxAe(s)← arg maxa∈Ave(s) Upt(a)
7: st ← ŝ, te ← t
8: while st /∈ Te ∪ Ze and t− te < 2i3 do
9: at ← sampled uniformly from MaxAe(st) . Pick an action

10: s′′
t ← succ(at) . Query successor oracle

11: s′
t ← repe(s′′

t)

12: Perform updates as in Algorithm 4 . Update Bounds
13: st+1 ← s′

t, t← t + 1

14: if t− te ≥ 2i3 then . Update ECs
15: (R, B)← Appear(steateste+1 . . . at−1st, i, 2i3)
16: C ←

⋃
s∈R Ave(s) \B

17: if B 6= ∅ then
18: if Te ∩ R 6= ∅ then
19: Te+1 ← Te ∪ R
20: for a ∈ B do Lot(a)← 1
21: else if C = ∅ then
22: Ze+1 ← Ze ∪ R
23: for a ∈ B do Upt(a)← 0
24: else
25: Se+1 ← (Se \R) ∪ {s(R,B)}
26: Ave+1(s(R,B))← C
27: for s ∈ R ∪ {s(R,B)} do collapsede+1(s)← s(R,B)

28: if ŝ ∈ R then ŝ← s(R,B)

29: e← e + 1
30: return (Lot(ŝ), Upt(ŝ))

This technical choice becomes more apparent in the proof of Lemma 35. Note that such an
i always exists since the left side of the first inequality converges to 0 for i→∞. Moreover,
we can find such an i using the values provided by the limited information setting as
defined in Definition 8.

Remark 7. Note that in contrast to the previous sections, the domain of the upper bound
Up and lower bound Lo functions are actions instead of state-action pairs. We deliberately
make this change to simplify notation since the algorithm frequently changes the state
associated with an action.

Remark 8. We implicitly assume that we can continue sampling with an action of our
choice: When we collapse, for example, an EC (R, B) with states s, s′ ∈ R into a single

49

6 Limited Information – General Case

representative state, we might enter the EC in state s but then continue sampling with an
action a ∈ Av(s′). This is not an essential restriction: Upon entering an already detected
EC, we can simply pause the algorithm and randomly pick actions in B until we reach the
state enabling the next action mandated by the algorithm.

6.3 Proof of Correctness

Now, to prove correctness of the algorithm, we again can reuse a lot of the previous
reasoning. However, we need to invest significant effort in the treatment of end components.
First of all, we again prove that the algorithm is well-defined.

Lemma 28. During all episodes, we have that Ave(s)∩Ave(s′) = ∅ for all states s, s′ ∈ Se

with s 6= s′.

Proof. The algorithm only modifies the set of available actions Ave whenever a new rep-
resentative state s(R,B) is added. In this case, we have Ave+1(s(R,B))← C ⊆

⋃
s∈R Ave(s)

and all states of R are removed.

Lemma 29. Algorithm 5 is well defined.

Proof. To prove this statement, we have to show that (i) no undefined values are accessed,
(ii) all assignments are free of contradictions, and (iii) we require no more information
than given by Definition 8.

For (i) and (ii), observe that when assigning the next episode’s variables, we only use
the variables of the current episode. Since we copy all unchanged variables, we only need
to take care of the newly introduced arguments, i.e. the representative states s(R,B). Such
a state is only added in Line 25. In the following lines, we define the state’s actions Av,
which is non-empty and disjoint from other states by Lemma 28. As no new actions are
added, the action values in s(R,B) still are defined. Observe that in Line 10 the successor
oracle is only given states of the original MDP. Claim (iii) follows immediately.

Now, we show several statements related to the newly added handling of end components.
Our goal is to show that the algorithm essentially samples from a collapsed MDP where
the ECs identified by the algorithm are collapsed. Then, we replicate the proof ideas of the
EC-free DQL algorithm on this collapsed MDP in order to again obtain the correctness.

Lemma 30. Algorithm 5 enters Line 15 at most |Act| times.

Proof. First, observe that due to the pigeon-hole principle, B never is empty: By (6.1),
our choice of i is larger than |Act|, thus a path of length at least i2 contains at least one
action i times. Consequently, whenever the algorithm enters Line 15, B is non-empty.
Initially, the size of B is bounded by

∑
s∈S1 |Av1(s)| = |Act|. We show that in any of

the three cases, we remove at least one action which can never occur again as part of
B. Consequently, after at most |Act| visits to Line 15, B would necessarily be empty,
contradicting the above.

Whenever a state is added to either Te or Ze, this state and its actions will not be
considered again—in particular, it will not occur as part of B. For the third case, we

50

6 Limited Information – General Case

show that the number of available actions
∑

s∈Se |Ave(s)| is reduced whenever a new
representative state is added. In that case, we have C ←

⋃
s∈R Ave(s) \ B, Se+1 ←

(Se \ R) ∪ {s(R,B)}, and Ave+1(s(R,B)) ← C. By construction of the algorithm and
definition of Appear, we have ∅ 6= B ⊆

⋃
s∈R Ave(s). Using Lemma 28 we thus have

|C| < |
⋃

s∈R Ave(s)|. Consequently,
∑

s∈Se+1 |Ave+1(s)| <
∑

s∈Se |Ave(s)|.

Lemma 31. Algorithm 5 either terminates or experiences an infinite number of episodes.

Proof. Since the length of each episode is limited, i.e. the loop of Line 8 always terminates
after a bounded number of steps, we only need to show that all other loops terminate.
All for-loops iterate over (sub-)sets of states or actions, which are finite by assumption.
The only remaining loop is the computation of repe in Line 11, where the representative
state is resolved. Observe that by construction of the algorithm, we either have that
collapsede(s) = s or collapsede(s) = s(R,B) with s ∈ R. Since we only modify collapsed when
a new representative state is added, this happens only finitely often, due to Lemma 30.

Lemma 32. If we add a representative state s(R,B) in Line 25 after an episode e the
bounds of any action a ∈ B are not changed after episode e.

Proof. During each episode e, we only consider states in Se and actions which are available
in such states, as the call to repe in Line 11 always yields an element of the current state
set Se due to Lemma 33. Since all states corresponding to actions in B are removed when
adding a representative state s(R,B) and these actions are not enabled in the newly added
state, they do not appear again.

Lemma 33. For any execution of the algorithm, we always have that repe(s) ∈ Se for any
state s ∈ S.

Proof. Follows from a simple inductive proof: Initially, we have rep1(s) = collapsed1(s) = s

for all s ∈ S1 by definition. Whenever we modify Se, i.e. remove some states R and add a
representative s(R,B), we set collapsede+1(s)← s(R,B) ∈ Se+1 for all s ∈ R.

In order to properly reason about the paths sampled by the algorithm, we introduce a
special MDP which corresponds to the current ‘view’ of the given MDP.

Definition 11. For any episode e, we define the sampling MDP Me = (Se, Acte, Ave, ∆e),
where

∆e(s, a) = {s 7→ 1} for s ∈ Se ∩ (Te ∪ Ze), a ∈ Ave(s), and

∆e(s, a, s′) =
∑

{s′′∈S|repe(s′′)=s′}
∆(state(a,M), a, s′′) for other states s, a ∈ Ave(s),

and Acte =
⋃

s∈Se Ave(s).

Note that the sampling MDP is well-defined due to Lemmas 28 and 33.

Lemma 34. Fix an execution of the algorithm until some episode e and let % be the finite
path sampled by the algorithm during episode e. The probability of sampling this path
equals the probability of obtaining this path on Me following the strategy πe starting in
state ŝ.

51

6 Limited Information – General Case

Proof. We prove by induction over the path %, using the Markov property. In particular,
we show that for any finite prefix, the probability of selecting action a and then reaching
state s′ in the next step is equal in both the algorithm and the sampling MDP. Observe
that we always have ŝ ∈ Se due to Line 28 and the induction start is trivial.

For the induction step, suppose we are in a state s. By construction of the algorithm,
s /∈ Te ∪ Ze. The algorithm now uniformly selects an action a from MaxAe(s), i.e. with
probability |MaxAe(s)|−1 for any such action. Then, a successor s′′ ∈ S is sampled
according to succ(s, a), i.e. with probability ∆(s, a, s′′). The overall successor then equals
s′ = repe(s′′). We have s′ ∈ Se by Lemma 33. Hence, a state s′ ∈ Se is sampled with
probability

∑
{s′′∈S|repe(s′′)=s′} ∆(s, a, s′′), just as in the MDP Me under strategy πe.

Assumption 9. Whenever the algorithm reaches Line 15, (R, B) is an EC of Me.

Lemma 35. The probability that Assumption 9 is violated during the execution of
Algorithm 5 is bounded by δ

4 .

Proof. We apply Lemma 27 withM =Me, T = Te∪Ze and π = πe. By construction ofMe

and the choice of T , we have that πe trivially satisfies the condition of this lemma, since each
state in T only has self-loops in Me. Clearly, we have that |Sπ| ≤

∑
s∈Se |Av(s)| ≤ |Act|,

since no actions are added during the execution of the algorithm. Consequently, we have
that either Prπe

Me,ŝ[♦≤2i3(Te ∪ Ze)] = 1 or

Prπe
Me,ŝ

[
Appi | ♦≤2i3(Te ∪ Ze)

]
≥ 1− 2(1 + i2) · e−(i−1) pmin(π)|S|+1

|S|+1 · pmin(π)−(|S|+1),

where Appi are all paths ρ ∈ PathsMe such that Appear(ρ, i, 2i3) is an EC in Me.
Now, observe that the algorithm only enters Line 15 if after 2i3 steps neither Te nor Ze

is reached. By applying Lemma 34, we get that the probability of (R, B) being an EC
given that Line 15 is entered exactly equals Prπe

Me,ŝ[Appi | ♦≤2i3(Te ∪ Ze)]. Since Line 15
is entered at most |Act| times due to Lemma 30, the statement follows by inserting the
definition of i from (6.1).

Lemma 36. Assume that Assumption 9 holds and fix some episode e. Let s ∈ Se some
state of the MDP Me and s′ ∈ S such that repe(s′) = s Then, s and s′ have the same
value, i.e.

Ve(s) = Prmax
Me,s[♦Te] = Prmax

M,s′ [♦T] = V(s′)

Proof. We prove by induction over the episode number. Initially, we have that M1 is
quite similar to the original MDP M. Recall that Z1 = ∅ and rep1(s) = s for all states.
Hence, the only difference lies in the transition function of all states s ∈ T . These only
have self-loops in M1, while in M they may have arbitrary transitions. This is irrelevant
for the value of the states, since it equals 1 in both cases.

Now fix an arbitrary episode e. We have that Ve(s) = V(s′) (IH) for any two states s,
s′ as in the claim. Me is only modified when Line 15 is entered. Let (R, B) the identified
set of states and actions. Due to Assumption 9, (R, B) is an EC of Me. We distinguish
the three cases in the algorithm:

52

6 Limited Information – General Case

• Te ∩ R 6= ∅: Since (R, B) is an EC, any state s ∈ R can reach Te with probability
one. Hence Ve+1(s) = 1 = Ve(s) = V(s′) [IH]. In particular, by adding all states of
R to Te+1, we do not change their value.

• C = ∅: In this case, once in R, this EC cannot be left, i.e. Prmax
Me,s[♦R] = 0 for all

s ∈ R. Consequently, we have that Ve(s) = 0 = V(s′) [IH]. This value is unchanged
by adding the states of R to Ze+1 and thus introducing a self-loop in Me.

• Add a representative state: By assumption, we have that repe(s′) ∈ R and thus
repe+1(s′) = s(R,B). We need to prove that Ve+1(s(R,B)) = V(s′). As (R, B) is an EC
by assumption, each state in R has the same value by Lemma 6. The representative
state s(R,B) has this value by applying the same reasoning as in Lemma 13.

Lemma 37. Assume that Assumption 9 holds and fix some episode e. For any EC
(R, B) ∈ EC(Me) there exists an EC (R′, B′) ∈ EC(Me′) with B ⊆ B′ for any e′ ≤ e.

Proof. Note that we do not necessarily have that R ⊆ R′, since some states of the EC
may have been replaced by a representative state.

We prove by induction on the episode e. Fix any such episode e and EC (R, B) ∈
EC(Me+1). We only modify the MDP Me when the algorithm enters Line 15, hence
w.l.o.g. we assume that this happened in episode e. Let (R, B) be the set of states and
actions identified in Line 15 during episode e. By Assumption 9, (R, B) is an EC of Me.
We distinguish the three cases in the algorithm:

• Te ∩ R 6= ∅: Then, all actions in B are changed to a self-loop in Me+1 and hence
we either have B = {a} ⊆ B or B ∩ B = ∅. In the former case, (R, B) satisfies the
conditions of the claim. In the latter, the EC (R, B) already existed inMe, since no
state or action of (R, B) was modified.

• C = ∅: Analogously to the above, all actions in B are now a self-loop in Me+1 and
the same reasoning applies.

• Add a representative state: If s(R,B) /∈ R, we necessarily have that B ∩ B = ∅.
Hence, the EC (R, B) again already existed in Me, since none of its components
was modified by this step. If instead s(R,B) ∈ R, we have that (R ∪R, B ∪B) is an
EC in Me, following the same reasoning as in Lemma 11.

Lemma 38. Assume that Assumption 9 holds and fix some step t with corresponding
episode e. Let (R, B) ∈ EC(Me) be any EC in Me. For any a ∈ B we have that (i) if
state(a,Me) ∈ Ze, then Upt(a) = 0 and (ii) Upt(a) = 1 otherwise.

Proof. Item (i) immediately follows from the definition of the algorithm and Me. When a
state is added to Ze, we set Upt(a) = 0 for all its actions. We prove Item (ii) by induction,
showing that the statement holds for all ECs at each step t. Initially, we have Up1(a) = 1
for all actions by definition of the algorithm. For the induction step fix some step t. We
have that Upt′(a) = 1 for all actions a in all ECs without zero-states for all t′ ≤ t (IH).
Now, let e′ be the episode of step t + 1 and fix any EC (R, B) inMe′ with R∩ Ze = ∅. By

53

6 Limited Information – General Case

repeatedly applying Lemma 37, there exists an EC (Re′ , Be′) ∈ EC(Me′) with B ⊆ Be′

for all e′ ≤ e. Since we have no zero-states in the EC in step t + 1, none of the Re′

contain zero-states either, by construction of the algorithm and Me. Thus, the induction
hypothesis [IH] is applicable and we have that Upt′(a) = 1 for any action a ∈ Be′ and
t′ ≤ t. Hence, we necessarily have that Upt′(s) = 1 for all s ∈ Re′ and t′ ≤ t (also using
Lemma 32). Whenever any action a ∈ B is selected at any step t′ ≤ t during episode e′ ≤ e,
all of its successors are part of the EC (Re′ , Be′), thus Upt′(s) = 1 for all successors by the
above reasoning. Consequently, we always add a value of 1 to accUp

t (a) and whenever an
Up-update is attempted for action a at some step t′ ≤ t, we would set Upt′(a) = 1.

Lemma 39. Assume that Assumption 9 holds and fix some step t with corresponding
episode e. Let t′ ≥ t with episode e′ ≥ e. We have for any state s ∈ S that Upt′(repe′(s)) ≤
Upt(repe(s)) and Lot(repe(s)) ≤ Lot′(repe′(s)).

Proof. The bounds of actions are modified by (i) the usual update, which only increases
or decreases, respectively (ii) in Lines 23 and 20, where upper bounds are set to 0 and
lower bounds set to 1, or (iii) when an EC is collapsed and thus the set of available
actions is modified in Line 26. Cases (i) and (ii) preserve monotonicity of the state
bound by definition. Case (iii) is proven separately for upper and lower bounds, with
the proof of the lower bound being significantly more involved. For the upper bounds,
observe that Ave′(s) ⊆ Ave(s) by definition, i.e. we never add new actions to any state.
Consequently, the maximum over the set of available actions does not increase. For the
lower bounds, we have to show that while collapsing ECs and thus removing actions, we
never remove all those which are optimal w.r.t. the lower bound, i.e. all actions a ∈ Ave(s)
with Lot(a) = Lot(s).

We proceed by additionally proving an auxiliary statement by induction on the step t
in parallel. In particular, we prove that for any step t with corresponding episode e (i) the
statement of the lemma holds (IH1) and (ii) Lot(a) ≤ maxs∈R,a′∈Ave(s)\B Lot(a′) for all
actions a ∈ B (or 0 if no such actions a′ exist) in all ECs (R, B) ∈ EC(Me) without a
target state, i.e. R ∩ Te = ∅. (IH2).

Initially, we have Lo1(a) = 0 by definition of the algorithm and both statements trivially
hold. For the induction step fix some time step t. We first treat the case when the lower
bound of action an action a is successfully updated in step t and later on deal with the
case of an EC being collapsed. Note that [IH1] trivially holds in this case, since the
value of a is never decreased. We only need to show the second statement [IH2], thus
assume that the updated action a is an internal action of some EC (R, B), i.e. a ∈ B.
For readability, denote C =

⋃
s∈R Ave(s) \ B the set of outgoing actions of (R, B). If

C = ∅, the statement follows directly: Since all lower bounds are initialized to zero, the
EC does not contain any target states by assumption, and there are no outgoing actions,
the algorithm never updates the lower bound of any action in B to a non-zero value.
Thus, assume that C 6= ∅. By applying [IH2] to all states of the EC (R, B), we get that
maxa′∈CLot(a′) = maxs∈RLot(s) (I). Furthermore, let k1 < . . . < km = t the steps of
the most recent visits to a with corresponding episodes e1 ≤ . . . ≤ em = e and sampled
successors s′

ki
. Now, let Ri = repei

(statese(R)) for 1 ≤ i ≤ m the set of states in episode ei

54

6 Limited Information – General Case

which eventually are collapsed to R. By applying the reasoning of Lemma 37 and 11, there
exists a set set of actions Bi with B ⊆ Bi such that (Ri, Bi) is an EC in Mei and thus
s′

ki
∈ Ri (II), since a ∈ Bi. By construction, we have that repe(Ri) = R (III). Finally,

we observe that the value of the outgoing actions does not decrease, hence the value we
assign to a in step t satisfies

Lot+1(a) + ε
def= 1

m

∑m

i=1
Loki

(s′
ki

)
[II]
≤ 1

m

∑m

i=1
maxs∈RiLoki

(s)
[IH1]
≤ 1

m

∑m

i=1
maxs∈RiLot(repe(s))

[III]= 1
m

∑m

i=1
maxs∈Rm

Lot(s)

= maxs∈Rm
Lot(s)

[I]= maxa′∈Cm
Lot(a′).

This concludes proof of the first part.
For the second part, i.e. when a set of states is collapsed by the algorithm, we have that

the collapsed set (R, B) is an EC by Assumption 9 and B are only internal actions. If the
collapsed EC contains target states, the statement trivially holds. Otherwise, we apply
the result of the first part and get that the lower bound assigned to any action in B is less
or equal to outgoing actions. Thus, removing the actions in B from the set of available
actions does not reduce the value of the obtained representative state.

With basic properties about the sampling MDP in place, we can now mimic the previous
idea of defining ‘converged’ state-action pairs and, using those, show that the algorithm
eventually converges with high probability.

Definition 12. For every step t during episode e, define KUp
t ,KLo

t ⊆ Acte by

KUp
t := {a | Upt(a)−∆e(state(a,Me), a)〈πt[Upt]〉 ≤ 3ε} and

KLo
t := {a | ∆e(state(a,Me), a)〈πt[Lot]〉 − Lot(a) ≤ 3ε}.

Again, we say that action a is Up-converged (Lo-converged) at step t if a ∈ KUp
t (a ∈ KLo

t).

Assumption 10. Suppose an Up-update of the action a is attempted at step t. Let
k1 < k2 < . . . < km = t be the steps of the m most recent visits to a, and e1 ≤ e2 ≤
. . . ≤ em the respective episodes. Then 1

m

∑m
i=1 Vei(s′

ki
) ≥ Vem

(a)− ε. Analogously, for
an attempted Lo-update, we have 1

m

∑m
i=1 Vei(s′

ki
) ≤ Vem

(a) + ε.

Assumption 11. Suppose an update of the upper bound (lower bound) of the action a is
attempted at step t. Let k1 < k2 < . . . < km = t be the steps of the m most recent visits
to a. If a is not Up-converged (Lo-converged) at step k1, the update at step t is successful.

We replicate most of the statements from the previous DQL algorithm.

Lemma 40. The following properties hold for Algorithm 5.

55

6 Limited Information – General Case

1. The number of successful updates of Up and Lo is bounded by |Act|
ε each.

2. The number of attempted updates of Up and Lo is bounded by ξ.

3. Assume that Assumption 9 holds. Then, the probability that Assumption 10 is violated
during the execution of Algorithm 4 is bounded by δ

4 .

4. Assume that Assumptions 9 and 10 hold. Then, we have Lot(a) ≤ Ve(a) ≤ Upt(a)
for all episodes e, steps t ≥ te, and actions a ∈ Acte.

5. We have for every step t in episode e and state s ∈ Se that

πt[Upt](s) = Upt(s) and πt[Lot](s) ≤ Lot(s).

6. If a /∈ KUp
t , then a /∈ KUp

t′ for all t′ ≥ t until an Up-update of action a succeeds or
the upper bound is set to 0 in Line 23.

7. The probability that Assumption 11 is violated during the execution of Algorithm 4 is
bounded by δ

4 .

8. Assume that Assumption 11 holds. If an attempted Up-update of action a at step t
fails and learnUp

t+1(a) = false, then a ∈ KUp
t+1. Once no more updates of Up succeed,

the analogous statement holds true for the lower bounds.

9. Assume that Assumption 11 holds. Then, there are at most 2m · |Act|
ε visits to state-

action pairs which are not Up-converged. Once the upper bounds are not updated
any more, there are at most 2m · |Act|

ε visits to state-action pairs which are not
Lo-converged.

Proof. Items 1 and 2 follow directly as in Lemmas 18 and 19. The only additional
observation to make is that the algorithm never adds new actions and that the changes to
the bounds outside of Line 12 never reset the progress of an action’s bounds.

Item 3 can be proven completely analogous to Lemma 20, since this proof only relies
on the Markov property of the successor sampling. We only need to adjust the definition
of the Yi slightly to incorporate the modifications of the algorithm. Let thus s′

ki
∈ S

denote the states obtained by the successor oracle in Line 10. By Lemma 36 we have that
Ve(repei

(s′
ki

)) = Ve(s′′
ki

), and thus Yi = Ve(repei
(s′

ki
)) still are i.i.d.

For Item 4, we first show that all newly introduced updates of Up and Lo are correct.
Using Assumption 9, we prove the two special cases. The algorithm sets Upt(a)← 0 if an
EC (R, B) without outgoing transitions and no target state is identified. In this case, we
clearly have that Ve(a) = 0 for all s ∈ R. Similarly, setting Loe(a) ← 1 when any state
in the EC (R, B) is an accepting state is correct, since clearly Ve(a) = 1 for all s ∈ R,
a ∈ Ave ∩B. Due to Lemma 36, copying the respective bounds to the representative state
s(R,B) (which happens implicitly in Line 26) is correct, too. Now, we can follow the same
reasoning as in Lemma 21.

Items 5 and 6 can be proven as in Lemma 22.

56

6 Limited Information – General Case

Item 7 is proven analogous to Item 3, following the proof of Lemma 23. Again, this
statement only depends on the sampled successors. We define Xi = πk1 [Upk1](repe1(s′′

ki
)).

Since we don’t modify the underlying transition probabilities, from which s′′
ki

is obtained,
these Xi are i.i.d. again and we can apply the same reasoning. To conclude the proof as
before, we need to employ Lemma 39. Note that since we only speak about the actual
computed bounds Up and Lo, we do not need to employ Lemma 36.

Item 8 follows directly as in Lemma 24. Similarly, Item 9 follows as in Lemma 25, using
Item 1 instead of Lemma 18.

In the proof of correctness for the no-EC DQL algorithm, we applied Lemma 46 directly
on the MDP to obtain bounds on the reachability of s+ based on the values of Up and Lo
in Lemma 26. Now, we cannot apply this lemma directly on either M or Me since both
may contain ECs. Hence, we apply the lemma on an MDP derived from Me to obtain a
similar result. Let us thus first define the set of all actions in ‘non-final’ ECs as

Ee =
⋃

{(R,B)∈EC(Me)|R∩(Te∪Ze)=∅}
B.

Lemma 41. Assume that Assumptions 9 and 10 hold and fix an episode e. Then, we have
for every state s ∈ Se

Upe(s)− 3ε · |S|p−|S|
min − Prπe

Me,s[♦KUp
e]− Prπe

Me,s[♦Ee] ≤ Prπe
Me,s[♦Te].

Proof. We first want to derive an MDP from Me without any ECs but still capturing
its behaviour. For this, recall that there are two kinds of ECs in Me. Firstly, there are
ECs which correspond to ECs in the original M. Secondly, we get a self-loop EC for
each identified target- or zero-state, i.e. states in Te or Ze. We define the derived MDP
M′

e = (Se ∪ {s+, s−}, Acte ∪ {a+, a−}, ∆′
e, Av′

e), where

∆′
e(s◦, a◦) = {s◦ 7→ 1} for ◦ ∈ {+,−}

∆′
e(s, a) = {s+ 7→ 1} for all s ∈ Te, a ∈ Ave(s),

∆′
e(s, a) = {s− 7→ 1} for all s ∈ Ze, a ∈ Ave(s),

∆′
e(s, a) = {s+ 7→ 1} for all a ∈ E, s = state(a,Me),

∆′
e(s, a) = ∆e(s, a) for all other s ∈ Se, a ∈ Ave(s),

and Av′
e(s) = Ave(s) for s ∈ Se and Av′

e(s◦) = {a◦} for ◦ ∈ {+,−}. In essence,M′
e equals

Me except that we (i) added the special states s+ and s−, (ii) all states in Te and Ze move
to s+ and s−, respectively, and (iii) all actions in ECs outside of Te and Ze move to s+, in
the spirit of Lemma 38.

Clearly, M′
e has no ECs except the special states s+ and s− and thus satisfies Assump-

tion 1. Moreover, the probability of reaching s+ in M′
e equals the probability of reaching

Te ∪ Ee in Me by construction of M′
e (I).

Now, we extend πe to select action a◦ in the special state s◦ to obtain π′
e. Furthermore, we

set X(s, a) = Upe(a) for all states s ∈ Se, a ∈ Ave(s), X(s+, a+) = 1, and X(s−, a−) = 0.

57

6 Limited Information – General Case

We apply Lemma 46 with M =M′
e, π = π′

e, κl = −1, and κu = 3ε. As a result, for each
state s ∈ Se we have

π′
e[X](s)− Prπ′

e
M′,s[♦{s+}] ≤ 3ε · |S|p−|S|

min ,

where M′ is the MDP defined in the lemma. Observe that for s ∈ Se (II)

π′
e[X](s) =

∑
a∈Av′

e(s)
π′

e(s, a) ·X(s, a) =
∑

a∈Ave(s)
πe(s, a) · Upe(a) = πe[Upe](s).

To analyse how M′ and M′
e are related, we first need to derive the structure of K from

the lemma. Thus, we now prove that K = KUp
e ∪ {a+, a−}. Recall that K = {a ∈

Acte ∪ {a+, a−} | X(s, a)−∆′
e(s, a)〈π′

e[X]〉 ≤ 3ε} and

∆′
e(s, a)〈π′

e[X]〉 =
∑

s′∈Se∪{s+,s−}
∆′

e(s, a, s′) ·
∑

a′∈Av′
e(s′)

π(s′, a′) ·X(s′, a′).

Clearly, a+ and a− satisfy the requirements due to their self-loop. Furthermore, we have
π′

e[X](s+) = 1, π′
e[X](s−) = 0 (III). Now, let a ∈ Acte and s ∈ Se the corresponding state.

By definition, we have X(s, a) = Upe(a), hence we need to show that ∆′
e(s, a)〈π′

e[X]〉 =
∆e(s, a)〈πe[Upe]〉. We proceed with a case distinction.

• s ∈ Te ∪ Ze: By definition of the algorithm, we have Upe(s) = 1 or 0, respectively.
The unique successor under any action a ∈ Ave(s) in Me equals s by definition,
thus ∆e(s, a)〈πe[Upe]〉 = Upe(s). In M′

e, the unique successor equals s+ or s−,
respectively. Thus, with [III], we have π′

e[X](s) = πe[Upe](s). The claim follows.

• a ∈ E: Note that this case implies that s /∈ Te ∪ Ze. Due to Lemma 38, we have
that Upe(a) = 1 for all such actions. Recall that πe follows actions maximizing
Upe. Consequently, πe[Upe](s′) = π′

e[X](s′) = Upe(s′) = 1 for all states s′ inside an
non-trivial EC ofMe. Thus, we also have ∆e(s, a)〈πe[Upe]〉 = 1. From the definition
of M′

e and [III], we directly get ∆′
e(s, a)〈π′

e[X]〉 = 1.

• s /∈ Te ∪ Ze, a /∈ E: By definition, we have ∆e(s, a) = ∆′
e(s, a). Together with [II]

and [III], the statement follows.

Recall thatM′ is defined asM′
e except that ∆′(s, a) = {s+ 7→ X(s, a), s− 7→ 1−X(s, a)}

for all a /∈ K. Hence, as in Lemma 26, we get that for all states s ∈ Se

Prπ′
e

M′,s[♦{s+}]− Prπ′
e

M′
e,s[♦KUp

e] ≤ Prπ′
e

M′
e,s[♦{s+}],

and thus with [I] we get (IV)

π′
e[X](s)− 3ε · |S|p−|S|

min − Prπ′
e

M′
e,s[♦KUp

e] ≤ Prπe
Me,s[♦(Te ∪ Ee)].

Further, we have π′
e[X](s) = πe[Upe](s) = Upe(s) by Lemma 40, Item 5 (V).

To conclude the proof, we show that Prπ′
e

M′
e,s[♦KUp

e] ≤ Prπe
Me,s[♦KUp

e] (VI). To this end,
observe that (i) for each state s ∈ Se and action a ∈ Ave(s) we either have ∆e(s, a) =

58

6 Limited Information – General Case

∆′
e(s, a) or supp ∆′

e(s, a) ⊆ {s+, s−} and (ii) the added states s+ and s− are absorbing.
Thus, each run reaching KUp

e in M′
e has a corresponding, equally probable path in Me.

The overall claim follows by combining the above equations and applying a union bound.

Upe(s)− 3ε · |S|p−|S|
min − Prπe

Me,s[♦KUp
e]

[V]= π′
e[X](s)− 3ε · |S|p−|S|

min − Prπe
Me,s[♦KUp

e]
[VI]
≤ π′

e[X](s)− 3ε · |S|p−|S|
min − Prπ′

e
M′

e,s[♦KUp
e]

[IV]
≤ Prπe

Me,s[♦(Te ∪ Ee)].

Lemma 42. Assume that Assumptions 9 and 10 hold and fix an episode e. Then, we have
for every state s ∈ Se

Prπe
Me,s[♦Te] ≤ Loe(s) + 3ε · |S|p−|S|

min + Prπe
Me,s[♦KLo

e] + Prπe
Me,s[♦Ee].

Proof. As in Lemma 41, we construct a second MDP without ECs, but slightly modify
the transition function. In particular, let M′

e = (Se ∪ {s+, s−}, Acte ∪ {a+, a−}, ∆′
e, Av′

e)
be defined as before. However, for a ∈ Ee and s = state(a,Me), we define

∆′
e(s, a) = {s+ 7→ ∆e(s, a)〈πe[Loe]〉, s− 7→ 1−∆e(s, a)〈πe[Loe]〉}.

Again, M′
e has no ECs except in the two special states and thus Lemma 46 is applicable.

We set X(s, a) = Loe(a) for all states s ∈ Se, X(s+, a+) = 1, and X(s−, a−) = 0. As above,
we have that π′

e[X](s) = πe[Loe](s) for all s ∈ Se. We apply the lemma with M =M′
e,

π = π′
e, κl = −3ε, and κu = 1. Thus, for each state s ∈ Se

Prπ′
e

M′,s[♦{s+}]− π′
e[X](s) ≤ 3ε · |S|p−|S|

min ,

where M′ is the MDP defined in the lemma. We again show that K = KLo
e ∪ {a+, a−} by

case distinction.

• Trivially, a+, a− ∈ K, π′
e[X](s+) = 1, and π′

e[X](s−) = 0.

• s ∈ Te ∪ Ze: The claims follow by an analogous argument. Recall that for these
states we have Upe(a) = Loe(a) for all a ∈ Ave(s).

• a ∈ E: Inserting the definitions, we get

∆′
e(s, a)〈π′

e[X]〉 = ∆′
e(s, a, s+) · π′

e[X](s+) + ∆′
e(s, a, s−) · π′

e[X](s−)

= ∆e(s, a)〈πe[Loe]〉 · 1 + (1−∆e(s, a)〈πe[Loe]〉) · 0

= ∆e(s, a)〈πe[Loe]〉.

• s /∈ Te ∪ Ze, a /∈ E: Follows analogously.

59

6 Limited Information – General Case

As in Lemma 26, we also get for all states s ∈ Se that

Prπ′
e

M′
e,s[♦{s+}] ≤ Prπ′

e
M′,s[♦{s+}] + Prπ′

e
M′

e,s[♦KLo
e].

Similar to the above proof, we have π′
e[X](s) = πe[Loe](s) ≤ Loe(s) by Lemma 40, Item 5.

With completely analogous reasoning, we can show that Prπ′
e

M′
e,s[♦KLo

e] ≤ Prπe
Me,s[♦KLo

e].
Putting all equations together, we get that

Prπ′
e

M′
e,s[♦{s+}] ≤ Loe(s) + 3ε · |S|p−|S|

min + Prπe
Me,s[♦KLo

e].

Now, it remains to show that Prπe
Me,s[♦Te] − Prπe

Me,s[♦Ee] ≤ Prπ′
e

M′
e,s[♦{s+}]. This claim

follows with the same reasoning as before, since we have that ∆e(s, a) = ∆′
e(s, a) for a /∈

Ee, s = state(a,Me). Thus, every path inMe which does not visit E has a corresponding,
equally probable path in M′

e. The overall claim again follows by combining the above
equations.

Theorem 4. Algorithm 5 terminates and yields a correct result with probability at least
1− δ after at most O(POLY(|Act|, p

−|S|
min , ε−1, ln δ)) steps.

Proof. This proof is largely analogous to the proof of Theorem 3, we shorten some of its
parts. Again, we only consider executions where Assumptions 11, 10, and 9 hold. By
Lemma 35 and Lemma 40, Items 7 and 3 together with the union bound, this happens
with probability at least 1− δ. Correctness of the result upon termination follows from
Lemma 40, Item 4.

We show by contradiction that the algorithm terminates for almost all considered
executions. Thus, assume that the execution does not halt with non-zero probability. By
Lemma 31, all of these executions experience an infinite number of episodes.

Due to Lemma 40, Item 2, there are only finitely many attempted updates on all
considered executions and the algorithm eventually does not change Up, since no successful
updates can occur from some step t onwards. Similarly, there are only finitely many EC
collapses due to Lemma 30, and eventually the sampling MDP Me stabilizes. This means
that all following samples are obtained by sampling according to the strategy πt on the
MDPMe. Again, we employ Lemma 48 to continue the proof and we get Prπt

Me,ŝ[♦KUp
t] = 0

and Prπt
Me,ŝ[♦KLo

t] = 0 on almost all considered executions. By an analogous argument, we
can show that Prπt

Me,ŝ[♦Ee] = 0, since otherwise by Lemma 27 (with T = Te ∪ Ze) we have
a non-zero probability of detecting a new EC, contradicting our assumption.

Thus, by applying Lemma 41

Prπe
Me,ŝ[♦Te] ≥ Upe(ŝ)− 3ε · |S|p−|S|

min − Prπe
Me,ŝ[♦KUp

e]− Prπe
Me,ŝ[♦Ee] > Upe(ŝ)− ε

2 .

Dually, with Lemma 42 we get

Prπe
Me,ŝ[♦Te] ≤ Loe(ŝ) + 3ε · |S|p−|S|

min + Prπe
Me,ŝ[♦KLo

e] + Prπe
Me,ŝ[♦Ee] < Loe(ŝ) + ε

2 .

Together, Upe(ŝ)− Loe(ŝ) < ε, contradicting the assumption.

60

6 Limited Information – General Case

For the step bound, we can mostly replicate the idea of the DQL variant without ECs.
In particular, we can bound the number of paths by the same argument: The probability
of reaching a non-Up- / non-Lo-converged action within |S| steps is at least p

|S|
min (or 0).

By Lemma 40, Item 9 we again get that the number of visits to such actions is bounded.
Since i ≥ |Act| ≥ |S| and thus the sampling isn’t stopped early due to that condition,
we again can bound the maximal number of paths by the same n. For the length of the
paths, observe that they are bounded by 2i3 by construction of the algorithm. From the
definition of i in Equation (6.1), we see that this bound is polynomial, too, by considering
the Taylor expansion of the exponential.

61

7 Experimental Evaluation

In this section, we provide a brief experimental evaluation of our BRTDP method. We
rewrote the implementation of [Brá+14] from scratch. Instead of integrating with PRISM
[KNP11], we only used it as a library for parsing the modelling language and instead use
our own, tailored representations of MDP. Previously, several sampling heuristics were
proposed. We implemented all of them and several more, however our experiments have
shown that a weighted sampling heuristic (transition probability times upper bound of
the successor) consistently performs among the best. Thus, we only report numbers for
this single sampling heuristic. Our implementation is able to handle both bounded and
unbounded reachability queries on MDP and Markov chains, as well as unbounded queries
on continuous-time Markov chains via embedding. Additionally, the implementation
supports simple ‘until’ properties, with support for full LTL [Pnu77] planned.

We also ran the current version of PRISM (v4.5) on the given models in its default con-
figuration. In particular, it uses the ‘hybrid’ engine, profiting from symbolic computation.
Moreover, PRISM uses standard value iteration without guarantees on the correctness
of the result by default, saving a lot of computational resources. To obtain somewhat
comparable values, we also ran PRISM with the -explicit -intervaliteration options.

Unfortunately, we could not obtain a working version of the original implementation of
[Brá+14] (compilation of the provided source code failed). Hence, we copied the values
reported in the original paper in Table 7.1. These results numbers were obtained on
different hardware. However, since the execution times of PRISM are very similar, we
conjecture that these numbers are comparable.

We omit evaluation of the DQL approach, since the associated constants are infeasible
for practical application: Already for an MDP with 10 States, 20 actions and pmin = 0.1,
we obtain m ≈ 1026 for ε = 0.1 and δ = 0.01. A practically more feasible approach based
on the ideas of this DQL algorithm can be found in [AKW19].

All experiments were run on a Ryzen 5 3600 Processor (6x3.60 GHz) and 16 GB RAM,
using OpenJDK version 11.0.8 on a Ubuntu 18.04 VM inside WSL2. Each experiment
was restricted to a single core (using taskset) and 2 GB RAM (using the -Xmx2G switch of
the JVM) with a timeout of 10 minutes (using timeout). We always report the wall-clock
time, i.e. the total elapsed time from start to finish of the overall process, including JVM
startup etc.

7.1 Results

We compare our new implementation to the original one of [Brá+14], replicating their
Table 1. In this comparison, four models with several parameter values are used. The
first three, zeroconf, wlan, and firewire (implementation with deadline), are taken from
the PRISM benchmark suite [KNP12]. The fourth, mer, is taken from [FKP11]. As in

62

7 Experimental Evaluation

Table 7.1: Comparison of the BRTDP algorithm to both PRISM’s default reachability
computation and the previous implementation of [Brá+14], replicating the
structure of their Table 1. For each of the four models, we first give the
values of all parameters, the size of the complete model as reported by PRISM,
the average number of states explored by our method and then the average
times required to obtain a result up to the specified precision (10−6 except for
zeroconf, where 10−8 was chosen in [Brá+14]) for each of the implementations.
For PRISM, we list the execution times for the ‘hybrid’ engine. We omit values
for the explicit approach since it ran out of memory on every instance. For
[Brá+14], we include the values reported in the original paper, taking the best
solution time out of all the heuristics presented there.

Name
[params] Values States Time (s)

PRISM BRTDP [Brá+14]

zeroconf
[N, K]

20, 10 3.0 · 106 529 124 < 1 1.5
20, 14 4.4 · 106 666 214 < 1 2.1
20, 18 5.5 · 106 814 294 < 1 3.7

wlan
[BOFF]

4 3.5 · 105 537 11 < 1 < 1
5 1.3 · 106 532 33 < 1 < 1
6 5.0 · 106 500 127 < 1 < 1

firewire
[delay, dl]

36, 200 6.7 · 106 17743 53 1.9 2.3
36, 240 1.3 · 107 31272 106 3.1 6.7
36, 280 1.9 · 107 48673 165 4.7 7.4

mer
[N, q]

3000, 0.0001 1.8 · 107 2589 145 1.0 2.4
3000, 0.9999 4154 144 1.1 2.8
4500, 0.0001 2.7 · 107 2588 225 1.0 2.4
4500, 0.9999 4156 225 1.1 2.8

[Brá+14], we use a precision requirement of ε = 10−6 except for zeroconf, where we
set ε = 10−8. The given values for our BRTDP approach are averaged over 5 runs to
account for the involved randomization. The results of Table 7.1 clearly show that on
these particular models the BRTDP method vastly outperforms the standard approach
of PRISM. Additionally, the explicit / interval iteration method of PRISM runs out of
memory while constructing the model on every single instance where our methods converge
within a few seconds. Moreover, we see that our new implementation is significantly faster
than the previous one.

Furthermore, we extended the evaluation to all applicable models of the PRISM bench-
mark suite. The results are summarized in Table 7.2. Overall, the table shows that a
significant portion of models is well suited for our analysis. However, as expected, our
approach does not consistently outperform PRISM. This most likely is due to a particular
structure of the models, for example, comprising a single end component. This makes
them less suitable for the guided path sampling approach, since we then have to repeatedly
discover and collapse end components instead of simply identifying and collapsing the
whole component once. Recall that this can be overcome by adapting the SamplePairs
and UpdateECs methods accordingly. Understanding the exact reasons why sometimes
classical interval iteration performs better and designing heuristics to identify these cases

63

7 Experimental Evaluation

Table 7.2: Evaluation of our BRTDP algorithm on several models from the PRISM bench-
mark suite [KNP12]. For each model, we report both the total number of
instances as well as the average size of all those instances where both PRISM
and our method succeeded. Then, for each property associated with those mod-
els we list both the average ratio of explored states and time until convergence
of our method compared to PRISM (both for the ‘hybrid’ and ‘explicit’ engine).
For readability, we group all models where BRTDP performed faster in the
upper part of the table.

Family # Avg. Size Property States Time

brp 12 2,302
p1 0.91 0.50 0.45
p2 0.98 0.50 0.45
p4 0.98 0.51 0.46

egl 16 95,230 unfairA 0.72 1.05 0.86
unfairB 0.75 1.09 0.84

wlan 7 969,161 collisions 0.00 0.38 0.24

zeroconf 16 383,919 correct_max 0.12 0.23 0.22
correct_min 0.10 0.23 0.24

consensus 6 7,819 c2 0.88 2.09 1.56
disagree 0.98 6.27 4.36

crowds 16 411,042 positive 0.95 5.41 1.89
csma 9 389,136 some_before 0.89 5.01 2.02
firewire (dl) 8 217,286 deadline 0.74 11.56 5.88
firewire (impl,dl) 8 2,048,813 deadline 0.51 3.79 2.96
nand 10 2,491,977 reliable 0.50 2.86 1.86
wlan (dl) 7 4,507,799 deadline 0.55 16.52 6.07

could significantly improve performance.

64

8 Conclusion and Future Work

In this thesis, we improved and extended the ideas of [Brá+14], fixing several imprecisions
and issues of the proofs. This results in a framework for verifying MDP, using learning
algorithms. Building upon exiting methods, we thus provide novel techniques to analyse
infinite-horizon reachability properties of arbitrary MDPs, yielding either exact bounds
in the white-box scenario or probabilistically correct bounds in the black-box scenario.
Moreover, we presented a generalization of the methods of [Brá+14], allowing for further,
more sophisticated applications.

Given this framework, an interesting direction for future work would be to extend this
approach with more sophisticated learning algorithms. Another, orthogonal direction is to
explore whether our approach can be combined with symbolic methods. Finally, we plan
to evaluate our algorithms on more real-world models.

65

A Auxiliary Statements

In this chapter we provide some general statements about Markov chains and decision
processes which are used in various proofs for the DQL algorithms.

From Reachability to Step-bounded Reachability

In this section we prove several statements relating the infinite-horizon reachability with
the reachability after a sufficiently large number of steps.

Lemma 43. For any Markov chain M = (S, δ), state s, and target set T , we have
that either PrM,s[♦T] = 0 or PrM,s[♦≤|S|T] ≥ δ

|S|
min, where δmin is the minimal transition

probability, i.e. δmin = min{δ(s, s′) | s ∈ S, s′ ∈ supp δ(s)}.

Proof. Fix the Markov chain M, state s, and target set T as in the lemma. In the first case
there is nothing to prove, thus assume that PrM,s[♦T] > 0. This means that there exists a
finite path % from s to some state in T . By the pigeon-hole principle, we can assume this
path has length at most |S|. Clearly, the probability of any single transition on this path
is at least δmin and thus the overall probability of this path is at least δ

|S|
min.

Corollary 2. For any MDP M = (S, Act, Av, ∆), memoryless strategy π ∈ ΠMD
M , state s,

and target set T , we have that either Prπ
M,s[♦T] = 0 or Prπ

M,s[♦≤|S|T] ≥ δmin(π)|S|, where
δmin(π) = min{π(s, a) ·∆(s, a, s′) | s ∈ S, a ∈ Av(s), π(s, a) > 0, s′ ∈ supp ∆(s, a, s′)}.

Proof. Follows directly from the above lemma by applying it to Mπ.

The following lemma shows that by considering a large enough horizon, the step-bounded
and unbounded reachability values coincide up to a small error, similar in spirit to [KS02,
Lemma 2].

Lemma 44. Given a Markov chain M = (S, δ), a state s ∈ S, a constant τ ∈ (0, 1], and a
target set T , for N ≥ ln(2

τ) · |S|δ−|S|
min we have

PrM,s[♦T]− PrM,s[♦≤N T] ≤ τ.

Proof. We can express PrM,s[♦T] as a sum of PrM,s[♦≤N T] and PrM,s[♦>N T], where
♦>N T = ♦T \ ♦≤N T are all paths which reach the set T but only after at least N + 1
steps. Clearly,

PrM,s[♦T]− PrM,s[♦≤N T] = PrM,s[♦>N T].

By [BKK14, Lemma 5.1] we have that PrM,s[♦>N T] ≤ 2 · cN , where c = exp(−|S|−1δ
|S|
min).

2 · cN ≤ τ ⇔ N · ln c ≥ ln τ

2 ⇔ N ≥ ln τ

2 · (ln c)−1

⇔ N ≥ ln τ

2 · −|S|δ
−|S|
min ⇔ N ≥ ln 2

τ
· |S|δ−|S|

min

66

A Auxiliary Statements

Unique Solution of Bellman Equations

Now, we prove that a particular class of Bellman equations has a unique solution by
proving that the associated functor is a contraction.

Lemma 45. Let M be an MDP, Av? : S → Act a function mapping a state s to a subset
of its available actions Av?(s) ⊆ Av(s), c : S → R a cost function, and π a memoryless
strategy on M. Define S= = {s | Av?(s) = ∅}.

If Prπ
M,s[♦S=] > 0 for all states s ∈ S, then the system of Bellman equations

f(s) = c(s) +
∑

a∈Av?(s)
π(s, a) ·∆(s, a)〈f〉

has a unique solution f .

Proof. Define the iteration operator F as

F (f)(s) = c(s) +
∑

a∈Av?(s)
π(s, a) ·∆(s, a)〈f〉.

Trivially, a function f : S → R is a solution to the equation system if and only if it is a
fixed point of F , i.e. F (f)(s) = f(s) for all states s ∈ S.

We show that F |S|, i.e. F applied |S| times, is a contraction and thus has a unique
fixed point, obtainable by iterating F . This means that there exists a contraction factor
0 ≤ γ < 1 such that for two arbitrary f, g : S → R, we have

max
s∈S

∣∣∣F |S|(f)(s)− F |S|(g)(s)
∣∣∣ ≤ γ ·max

s∈S
|f(s)− g(s)|. (A.1)

Let P (s, s′, k) be the probability of reaching state s′ starting from s in exactly k steps
using the strategy π by using only actions from Av?. Note that for s ∈ S= this implies
P (s, s′, k) = 0 for any s′ ∈ S and any number k. For s ∈ S? := S \ S=, we have that

F |S|(f)(s) =
∑

s′∈S

(∑|S|−1
i=0

P (s, s′, i) · c(s′)
)

+
∑

s′∈S?
P (s, s′, |S|) · f(s′)

Observe that the first term is independent of f , hence for s ∈ S? we have∣∣∣F |S|(f)(s)− F |S|(g)(s)
∣∣∣

=
∣∣∣∑

s′∈S?
P (s, s′, |S|) · f(s′)−

∑
s′∈S?

P (s, s′, |S|) · g(s′)
∣∣∣

≤
∑

s′∈S?
P (s, s′, |S|) ·

∣∣f(s′)− g(s′)
∣∣

≤
(∑

s′∈S?
P (s, s′, |S|)

)
·max

s′∈S

∣∣f(s′)− g(s′)
∣∣.

By assumption, we have that Prπ
M,s[♦S=] > 0. This implies that Prπ

M,s[♦≤|S|S=] ≥
δmin(π) > 0 by Corollary 2. For s ∈ S=, observe that F |S|(f)(s) = f(s) = c(s) and
hence

∣∣∣F |S|(f)(s)− F |S|(g)(s)
∣∣∣ = |f(s)− g(s)| = |c(s)− c(s)| = 0. Consequently, γ =

maxs∈S?

∑
s′∈S?

P (s, s′, |S|) ≤ δmin(π) < 1 satisfies Inequality A.1 and we have that F |S|

is a contraction. By the Banach fixed point theorem we get that F |S| has a unique fixed
point and thus the equation system has a unique solution.

67

A Auxiliary Statements

Local Error Bounds to Global

The next lemma intuitively bounds the overall error of an approximation in an MDP given
that the approximation is ‘close’ locally. Recall that, by definition

∆(s, a)〈π[X]〉 =
∑

s′∈S
∆(s, a, s′) ·

∑
a′∈Av(s′)

π(s′, a′) · f(s′, a′).

Thus, the term X(s, a) −∆(s, a)〈π[X]〉 in the lemma essentially denotes the difference
between the state-action value X(s, a) and the expected value obtained from X in the
successors of (s, a) following π. Consequently, K contains those state-action pairs for which
the value under X is consistent with the value of its successors up to some error.

Lemma 46. Let M = (S, Act, Av, ∆) be an MDP satisfying Assumption 1, X : S×Av →
[0, 1] a function assigning a value between 0 and 1 to each state-action pair, π a memoryless
strategy on M, and κl ≤ κu two error bounds. Set

K := {(s, a) | κl ≤ X(s, a)−∆(s, a)〈π[X]〉 ≤ κu}.

Define a new MDP M′ = (S, Act, Av, ∆′) where

∆′(s, a) =

∆(s, a) if (s, a) ∈ K, and

{s+ 7→ X(s, a), s− 7→ 1−X(s, a)} otherwise.

Then, for each state s ∈ S we have

κl ≤
δmin(π)|S|

|S|

(
π[X](s)− Prπ

M′,s[♦{s+}]
)
≤ κu,

where δmin(π) = min{π(s, a) ·∆(s, a, s′) | s ∈ S, a ∈ Av(s), π(s, a) > 0, s′ ∈ supp(∆(s, a))}
is the smallest transition probability in the Markov chain Mπ.

Proof. Define v′(s) = Prπ
M′,s[♦{s+}]. Furthermore, let K(s) = {a ∈ Av(s) | (s, a) ∈ K}

and ¬K(s) = K(s) ∩ Av(s) the sets of all actions a ∈ Av(s) such that (s, a) ∈ K and
(s, a) /∈ K, respectively. Observe that v′ is a solution to the following system of equations:

v′(s+) = 1

v′(s−) = 0

v′(s) =
∑

a∈K(s)
π(s, a) ·∆(s, a)〈v′〉+

∑
a∈¬K(s)

π(s, a) ·X(s, a)

We apply Lemma 45 to show that v′ is the unique solution. Let ε(s+) = 1, ε(s−) = 0, and
ε(s) =

∑
a∈¬K(s)π(s, a) ·X(s, a) for all other s ∈ S. Further, set Av?(s+) = Av?(s−) = ∅

and Av?(s) = K(s) for all other s ∈ S. Then, {s+, s−} ⊆ S=. The MDP M′ also satisfies
Assumption 1, since no new ECs are introduced, and thus Prπ

M,s[♦S=] = 1 > 0 for all
s ∈ S by Lemma 2. Consequently, Lemma 45 is applicable and v′ is the unique solution of
the above equations.

68

A Auxiliary Statements

π[X] satisfies a similar set of equations:

π[X](s+) = 1

π[X](s−) = 0

π[X](s) =
∑

a∈Av(s)
π(s, a) ·X(s, a)

=
∑

a∈K(s)
π(s, a) ·X(s, a) +

∑
a∈¬K(s)

π(s, a) ·X(s, a)

= κ(s) +
∑

a∈K(s)
π(s, a) ·∆(s, a)〈π[X]〉+

∑
a∈¬K(s)

π(s, a) ·X(s, a)

where κ(s) =
∑

a∈K(s) π(s, a) · (X(s, a) −∆(s, a)〈π[X]〉) is bounded by κl ≤ κ(s) ≤ κu.
Again, by Lemma 45, these equations then have a unique fixed point, setting ε(s) =
κ(s) +

∑
a∈¬K(s)π(s, a) ·X(s, a).

Now, we prove a bound for the difference between X and v′ using the above characteriz-
ations. Observe that the above equation systems only differ structurally by the error term
κ(s). Let thus f(s) = π[X](s)− v′(s). This f is a fixed point of the following equation
system:

f(s+) = f(s−) = 0

f(s) = κ(s) +
∑

a∈K(s)
π(s, a) ·∆(s, a)〈f〉

Clearly, f again is unique by Lemma 45.
Given a state s, the probability to reach the terminal states s+ and s− in |S| steps

following strategy π is bounded from below by δmin(π)|S| due to Corollary 2. Consequently,
the probability of not reaching these states in |S| steps is bounded from above by 1 −
δmin(π)|S| < 1. Hence, we can bound the difference between π[X] and v′ by

κ(s) ·
∑∞

n=0
|S|
(
1− δmin(π)|S|

)n
= κ(s) · |S|δmin(π)−|S|.

Bounding Reachability on Similar MDP

In this lemma, we show that MDP which are sufficiently ‘similar’ also have similar
reachability values.

Lemma 47. Let M = (S, Act, Av, ∆) be an MDP, T ⊆ S a set of target states, K ⊆
S × Av a set of state-action pairs, and M′ = (S′, Act′, Av′, ∆′) an arbitrary MDP with
K ⊆ S′ × Av′ that coincides with M on K and T , i.e. (i) Av(s) = Av′(s) for all s ∈ K,
(ii) ∆(s, a) = ∆′(s, a) for all (s, a) ∈ K, and (iii) T ⊆ S′. Moreover, let π be a strategy in
M, s ∈ S ∩ S′ an arbitrary state in both MDP, and N ∈ N a natural number. Then,

Prπ
M,s[♦≤N T] ≥ Prπ′

M′,s[♦≤N T]− Prπ
M,s[♦≤NK],

where π′ is an arbitrary strategy equal to π on all finite paths over K, i.e. π(%) = π′(%) for
all % ∈ K? × S ∩ FPathsM.

Proof. For a finite path % = s1a1 . . . an−1sn ∈ FPathsM, let Prπ
M,s[%] denote the probability

of path % occurring when following strategy π from state s. Let KN denote the (finite)

69

A Auxiliary Statements

set of all finite paths % of length N starting in s such that all state-action pairs (si, ai)
in % are in K. Similarly, let ¬KN denote the set of all such paths containing at least one
state-action pair not in K. Let R(%) be a function which returns 1 if some target state of
T is in path % and 0 otherwise. Then, we have the following:

Prπ′
M′,s[♦≤N T]− Prπ

M,s[♦≤N T] (A.2)

=

∑
%∈KN

(
Prπ′

M′,s[%] · R(%)− Prπ
M,s[%] · R(%)

)
+

∑
%∈¬KN

(
Prπ′

M′,s[%] · R(%)− Prπ
M,s[%] · R(%)

) (A.3)

=
∑

%∈¬KN

(
Prπ′

M′,s[%] · R(%)− Prπ
M,s[%] · R(%)

)
(A.4)

≤
∑

%∈¬KN

Prπ′
M′,s[%] · R(%) (A.5)

≤
∑

%∈¬KN

Prπ′
M′,s[%] (A.6)

= Prπ
M,s[♦≤NK] (A.7)

In Equation A.3, we simply split the set of all paths of length N into KN and ¬KN . For
Equations A.4 and A.7, note that Prπ′

M′,s and Prπ
M,s agree on KN by choice of M′ and

π′.

Repeating Events in Markov Processes

Finally, we prove a general statement of Markov processes. The statement itself seems
to be quite obvious, yet surprisingly tricky to prove. In essence, we want to show the
following. Suppose that we are given a Markov process Xt on some probability space
Ω together with a sequence of events At. Moreover, assume that for a significant set of
atoms ω ∈ Ω there is an infinite set of times T such that the conditional probability of At

occurring is at least ε > 0, i.e. P[Xt ∈ At | Xt−1(ω)] > ε. Then, the set of atoms for which
infinitely many At actually occur is also significant. The subtle difficulty of this statement
arises from the fact that (i) conditional probabilities are considered, and (ii) the set T

depends on the particular atom ω.

Lemma 48. Fix some probability space (Ω,F ,P) and a measure space (S,S). Let
Xt : Ω→ S be a Markov process on Ω and At ∈ S measurable events in S. Assume that
the set Ω′ = {ω ∈ Ω | ∃T. |T | = ∞ ∧ ∀t ∈ T. P[Xt ∈ At | Xt−1](ω) > ε} has positive
measure, i.e. P[Ω′] > 0, and that Ω′

t = {ω ∈ Ω | P[Xt ∈ At | Xt−1](ω) > ε} is measurable
for all t ∈ N. Then, P[{ω ∈ Ω | ∃T. |T | =∞∧ ∀t ∈ T. Xt(ω) ∈ At}] = P[Ω′].

Proof. Let ω ∈ Ω′. By assumption, for each such ω, there exists an infinite set of time-
points Tries(ω) = {t1, t2, · · · } with 1 ≤ t1 < t2 < · · · where P[Xt ∈ At | Xt−1](ω) > ε.
We call such an event a try of ω. Denote Tryi(ω) = ti or ∞ if no such ti exists, e.g.
for ω /∈ Ω′. Informally, Tryi is the time of the i-th try of some outcome ω. Tryi is
measurable by assumption, since its pre-images can be constructed using Ω′

t. Moreover,

70

A Auxiliary Statements

let Succs(ω) = {s1, s2, · · · } ⊆ Tries(ω) be the times where Xsj (ω) ∈ Asj , called j-th
success(ful try). Note that Succs(ω) possibly is finite or even empty for some outcomes ω,
even for ω ∈ Ω′, since infinitely many tries may fail. Now, let Succj(ω) = sj ∈ Succs(ω)
the time of the j-th success or ∞ if no such sj exists, i.e. j > |Succs(ω)|. Succj is
measurable since Tryi, Xt and At are measurable. To succinctly capture corner-cases, we
further define Succ0 = 0. The successes Succs(ω) naturally partition the set Tries(ω) into
TriesJj(ω) = {t ∈ Tries(ω) | Succj(ω) < t ≤ Succj+1(ω)}. We use TryJi,j(ω) to refer to the
i-th element of TriesJj(ω), or ∞ if no such element exists. TryJi,j is measurable due to
Succj being measurable. Informally, TryJi,j(ω) denotes the time of the i-th try since the
j-th success.

We show that after a sufficient number of tries, there is a success with high probability.
Repeating this argument inductively, we then show that there are infinitely many successes
for almost all outcomes ω in Ω′.

Let thus TryAtTJt
i,j denote the set of runs which at time t have succeeded j times before

and since the j-th success experienced i-th tries, where this i-th try happens exactly at
time t. Formally,

TryAtTJt
i,j := {ω ∈ Ω′ | TryJi,j(ω) = t}.

Note that this definition implicitly includes the condition Succj(ω) ≤ t < Succj+1(ω) by
definition of TryJi,j . Thus, TryAtTJt

i,j are disjoint for fixed i and j.
We furthermore define TriesJi,j =

⋃∞
t=1 TryAtTJt

i,j = {ω ∈ Ω′ | TryJi,j(ω) < ∞} as the
set of outcomes which after their j-th success experienced at least i − 1(1) unsuccessful
tries. We have TriesJi,j = TriesJi+1,j ∪ TriesJ1,j+1, since the i-th try either fails and the
i + 1-th try is experienced later (since TriesJi,j ⊆ Ω′, implying infinitely many tries) or the
try succeeds. Observe that TriesJi+1,j and TriesJ1,j+1 are not disjoint, since, for example,
the runs succeeding at the i + 1-th try also are an element of TriesJ1,j+1. On the contrary,
we show that P[TriesJi,j \ TriesJ1,j+1] = 0, i.e. almost all runs in TriesJi,j will eventually
succeed again.

To this end, we show that for any fixed j we have that limi→∞ P[TriesJi,j] = 0. Fix
some j and i with P[TriesJi,j] > 0 (otherwise there is nothing to prove, since TriesJi,j

is monotonically decreasing in i). Let TryTimesJi,j = {t | P[TryAtTJt
i,j] > 0} which

is non-empty by the previous condition. Clearly, P[TriesJi,j] =
∑∞

t=1 P[TryAtTJt
i,j] =∑

t∈TryTimesJi,j
P[TryAtTJt

i,j], as TryAtTJt
i,j are disjoint. Observe that TryAtTJt

i,j is the
intersection of several conditions on Xt′ for t′ < t and requiring that P[Xt ∈ At | Xt−1] > ε.
Hence, by the Markov property we have

P[Xt /∈ At | TryAtTJt
i,j] = 1− P[Xt ∈ At | TryAtTJt

i,j] = 1− P[Xt ∈ At | Xt−1] < 1− ε.

Intuitively, this simply means that the probability of a try at time t succeeding does not
depend on the number of previous tries and successes. Thus, for all t ∈ TryTimesJi,j ,
we have P[Xt /∈ At ∩ TryAtTJt

i,j] < (1 − ε) · P[TryAtTJt
i,j]. Observe that

⋃∞
t=1(Xt /∈

At ∩ TryAtTJt
i,j) = TriesJi+1,j since the intersection implies that the i-th try at time t was

(1)TryJi,j(ω) = t does not exclude that the try at time t is successful.

71

A Auxiliary Statements

unsuccessful. Together, we get

P[TriesJi+1,j] = P[
⋃∞

t=1
Xt /∈ At ∩ TryAtTJt

i,j] =
∑∞

t=1
P[Xt /∈ At ∩ TryAtTJt

i,j]

=
∑

t∈TryTimesJi,j

P[Xt /∈ At ∩ TryAtTJt
i,j]

<
∑∞

t=1
(1− ε) · P[TryAtTJt

i,j] = (1− ε) · P[
⋃∞

t=1
TryAtTJt

i,j]

= (1− ε) · P[TriesJi,j].

Consequently, limi→∞ P[TriesJi,j] = 0 for any fixed j.
As argued before, we have TriesJi,j = TriesJi+1,j ∪ TriesJ1,j+1. Iterating this equation

yields TriesJi,j = TriesJi+k,j ∪ TriesJ1,j+1 for any k ≥ 1 and consequently TriesJ1,j =⋂∞
i=1 TriesJi,j ∪ TriesJ1,j+1. Informally, this equation can be read as ‘all outcomes which

succeed at least j times either try infinitely often or succeed at least j + 1 times.’ Let
TriesJ∞,j =

⋂∞
i=1 TriesJi,j = {ω ∈ Ω′ | Succj(ω) < ∞ = Succj+1(ω)}. Clearly, TriesJ∞,j ∩

TriesJ1,j+1 = ∅, thus we have P[TriesJ1,j+1 \ TriesJ1,j] = P[TriesJ∞,j]. Additionally, we
have P[TriesJ∞,j] = infi∈N P[TriesJi,j] = 0 by the above reasoning. Hence P[TriesJ1,j+1 \
TriesJ1,j] = 0. This implies that almost all runs in Ω′ succeed infinitely often, concluding
the proof.

72

Bibliography

[AKW19] Pranav Ashok, Jan Kretı́nský and Maximilian Weininger. ‘PAC Statistical
Model Checking for Markov Decision Processes and Stochastic Games’. In:
Computer Aided Verification - 31st International Conference, CAV 2019,
New York City, NY, USA, July 15-18, 2019, Proceedings, Part I. Ed. by
Isil Dillig and Serdar Tasiran. Vol. 11561. Lecture Notes in Computer Science.
Springer, 2019, pp. 497–519. doi: 10.1007/978-3-030-25540-4_29. url:
https://doi.org/10.1007/978-3-030-25540-4%5C_29.

[AL09] Husain Aljazzar and Stefan Leue. ‘Generation of Counterexamples for Model
Checking of Markov Decision Processes’. In: QEST 2009, Sixth International
Conference on the Quantitative Evaluation of Systems, Budapest, Hungary,
13-16 September 2009. IEEE Computer Society, 2009, pp. 197–206. doi:
10.1109/QEST.2009.10. url: https://doi.org/10.1109/QEST.2009.10.

[Ang88] Dana Angluin. ‘Learning With Hints’. In: Proceedings of the First Annual
Workshop on Computational Learning Theory, COLT ’88, Cambridge, MA,
USA, August 3-5, 1988. Ed. by David Haussler and Leonard Pitt. ACM/MIT,
1988, pp. 167–181. url: http://dl.acm.org/citation.cfm?id=93075.

[Ash+17] Pranav Ashok, Krishnendu Chatterjee, Przemyslaw Daca, Jan Kretı́nský
and Tobias Meggendorfer. ‘Value Iteration for Long-Run Average Reward in
Markov Decision Processes’. In: Computer Aided Verification - 29th Interna-
tional Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceed-
ings, Part I. Ed. by Rupak Majumdar and Viktor Kuncak. Vol. 10426. Lecture
Notes in Computer Science. Springer, 2017, pp. 201–221. doi: 10.1007/978-
3-319-63387-9_10. url: https://doi.org/10.1007/978-3-319-63387-
9%5C_10.

[Ash+18] Pranav Ashok, Yuliya Butkova, Holger Hermanns and Jan Kretı́nský. ‘Continuous-
Time Markov Decisions Based on Partial Exploration’. In: Automated Techno-
logy for Verification and Analysis - 16th International Symposium, ATVA 2018,
Los Angeles, CA, USA, October 7-10, 2018, Proceedings. Ed. by Shuvendu K.
Lahiri and Chao Wang. Vol. 11138. Lecture Notes in Computer Science.
Springer, 2018, pp. 317–334. doi: 10.1007/978-3-030-01090-4_19. url:
https://doi.org/10.1007/978-3-030-01090-4%5C_19.

[Bah+97] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico
Macii, Abelardo Pardo and Fabio Somenzi. ‘Algebraic Decision Diagrams
and Their Applications’. In: Formal Methods in System Design 10.2/3 (1997),
pp. 171–206. doi: 10.1023/A:1008699807402. url: https://doi.org/10.
1023/A:1008699807402.

73

https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-030-25540-4%5C_29
https://doi.org/10.1109/QEST.2009.10
https://doi.org/10.1109/QEST.2009.10
http://dl.acm.org/citation.cfm?id=93075
https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-319-63387-9%5C_10
https://doi.org/10.1007/978-3-319-63387-9%5C_10
https://doi.org/10.1007/978-3-030-01090-4_19
https://doi.org/10.1007/978-3-030-01090-4%5C_19
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1023/A:1008699807402

Bibliography

[Bai+17] Christel Baier, Joachim Klein, Linda Leuschner, David Parker and Sascha
Wunderlich. ‘Ensuring the Reliability of Your Model Checker: Interval It-
eration for Markov Decision Processes’. In: Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part I. Ed. by Rupak Majumdar and Viktor Kuncak.
Vol. 10426. Lecture Notes in Computer Science. Springer, 2017, pp. 160–180.
doi: 10.1007/978-3-319-63387-9_8. url: https://doi.org/10.1007/
978-3-319-63387-9%5C_8.

[Bar+08] Jiri Barnat, Lubos Brim, Ivana Černá, Milan Ceska and Jana Tumova.
‘ProbDiVinE-MC: Multi-core LTL Model Checker for Probabilistic Systems’.
In: Fifth International Conference on the Quantitative Evaluaiton of Systems
(QEST 2008), 14-17 September 2008, Saint-Malo, France. IEEE Computer
Society, 2008, pp. 77–78. doi: 10.1109/QEST.2008.29. url: https://doi.
org/10.1109/QEST.2008.29.

[BBR14] Aaron Bohy, Véronique Bruyère and Jean-François Raskin. ‘Symblicit al-
gorithms for optimal strategy synthesis in monotonic Markov decision pro-
cesses’. In: Proceedings 3rd Workshop on Synthesis, SYNT 2014, Vienna,
Austria, July 23-24, 2014. Ed. by Krishnendu Chatterjee, Rüdiger Ehlers and
Susmit Jha. Vol. 157. EPTCS. 2014, pp. 51–67. doi: 10.4204/EPTCS.157.8.
url: https://doi.org/10.4204/EPTCS.157.8.

[BBS95] Andrew G. Barto, Steven J. Bradtke and Satinder P. Singh. ‘Learning to
Act Using Real-Time Dynamic Programming’. In: Artif. Intell. 72.1-2 (1995),
pp. 81–138. doi: 10.1016/0004-3702(94)00011-O. url: https://doi.org/
10.1016/0004-3702(94)00011-O.

[BDG06] Christel Baier, Pedro R. D’Argenio and Marcus Größer. ‘Partial Order Reduc-
tion for Probabilistic Branching Time’. In: Electron. Notes Theor. Comput.
Sci. 153.2 (2006), pp. 97–116. doi: 10.1016/j.entcs.2005.10.034. url:
https://doi.org/10.1016/j.entcs.2005.10.034.

[BDH17] Carlos E. Budde, Pedro R. D’Argenio and Arnd Hartmanns. ‘Better Auto-
mated Importance Splitting for Transient Rare Events’. In: Dependable Soft-
ware Engineering. Theories, Tools, and Applications - Third International
Symposium, SETTA 2017, Changsha, China, October 23-25, 2017, Proceedings.
Ed. by Kim Guldstrand Larsen, Oleg Sokolsky and Ji Wang. Vol. 10606. Lec-
ture Notes in Computer Science. Springer, 2017, pp. 42–58. doi: 10.1007/978-
3-319-69483-2_3. url: https://doi.org/10.1007/978-3-319-69483-
2%5C_3.

[Bel57] Richard Bellman. ‘A Markovian decision process’. In: Journal of mathematics
and mechanics (1957), pp. 679–684.

[Bel66] Richard Bellman. ‘Dynamic programming’. In: Science 153.3731 (1966),
pp. 34–37.

74

https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-63387-9%5C_8
https://doi.org/10.1007/978-3-319-63387-9%5C_8
https://doi.org/10.1109/QEST.2008.29
https://doi.org/10.1109/QEST.2008.29
https://doi.org/10.1109/QEST.2008.29
https://doi.org/10.4204/EPTCS.157.8
https://doi.org/10.4204/EPTCS.157.8
https://doi.org/10.1016/0004-3702(94)00011-O
https://doi.org/10.1016/0004-3702(94)00011-O
https://doi.org/10.1016/0004-3702(94)00011-O
https://doi.org/10.1016/j.entcs.2005.10.034
https://doi.org/10.1016/j.entcs.2005.10.034
https://doi.org/10.1007/978-3-319-69483-2_3
https://doi.org/10.1007/978-3-319-69483-2_3
https://doi.org/10.1007/978-3-319-69483-2%5C_3
https://doi.org/10.1007/978-3-319-69483-2%5C_3

Bibliography

[Ber17] Dimitri P. Bertsekas. ‘Value and Policy Iterations in Optimal Control and
Adaptive Dynamic Programming’. In: IEEE Trans. Neural Netw. Learning
Syst. 28.3 (2017), pp. 500–509. doi: 10.1109/TNNLS.2015.2503980. url:
https://doi.org/10.1109/TNNLS.2015.2503980.

[BGC04] Christel Baier, Marcus Größer and Frank Ciesinski. ‘Partial Order Reduction
for Probabilistic Systems’. In: 1st International Conference on Quantitative
Evaluation of Systems (QEST 2004), 27-30 September 2004, Enschede, The
Netherlands. IEEE Computer Society, 2004, pp. 230–239. doi: 10.1109/QEST.
2004.1348037. url: https://doi.org/10.1109/QEST.2004.1348037.

[BHH12] Jonathan Bogdoll, Arnd Hartmanns and Holger Hermanns. ‘Simulation and
Statistical Model Checking for Modestly Nondeterministic Models’. In: Meas-
urement, Modelling, and Evaluation of Computing Systems and Dependability
and Fault Tolerance - 16th International GI/ITG Conference, MMB & DFT
2012, Kaiserslautern, Germany, March 19-21, 2012. Proceedings. Ed. by
Jens B. Schmitt. Vol. 7201. Lecture Notes in Computer Science. Springer,
2012, pp. 249–252. doi: 10.1007/978-3-642-28540-0_20. url: https:
//doi.org/10.1007/978-3-642-28540-0%5C_20.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008. isbn: 978-0-262-02649-9.

[BKH99] Christel Baier, Joost-Pieter Katoen and Holger Hermanns. ‘Approximate
Symbolic Model Checking of Continuous-Time Markov Chains’. In: CONCUR
’99: Concurrency Theory, 10th International Conference, Eindhoven, The
Netherlands, August 24-27, 1999, Proceedings. Ed. by Jos C. M. Baeten and
Sjouke Mauw. Vol. 1664. Lecture Notes in Computer Science. Springer, 1999,
pp. 146–161. doi: 10.1007/3-540-48320-9_12. url: https://doi.org/
10.1007/3-540-48320-9%5C_12.

[BKK14] Tomás Brázdil, Stefan Kiefer and Antonı́n Kucera. ‘Efficient Analysis of
Probabilistic Programs with an Unbounded Counter’. In: J. ACM 61.6 (2014),
41:1–41:35. doi: 10.1145/2629599. url: https://doi.org/10.1145/
2629599.

[BKW14] Nicolas Basset, Marta Z. Kwiatkowska and Clemens Wiltsche. ‘Compositional
Controller Synthesis for Stochastic Games’. In: CONCUR 2014 - Concur-
rency Theory - 25th International Conference, CONCUR 2014, Rome, Italy,
September 2-5, 2014. Proceedings. Ed. by Paolo Baldan and Daniele Gorla.
Vol. 8704. Lecture Notes in Computer Science. Springer, 2014, pp. 173–187.
doi: 10.1007/978-3-662-44584-6_13. url: https://doi.org/10.1007/
978-3-662-44584-6%5C_13.

[BKW18] Nicolas Basset, Marta Z. Kwiatkowska and Clemens Wiltsche. ‘Compositional
strategy synthesis for stochastic games with multiple objectives’. In: Inf.
Comput. 261.Part (2018), pp. 536–587. doi: 10.1016/j.ic.2017.09.010.
url: https://doi.org/10.1016/j.ic.2017.09.010.

75

https://doi.org/10.1109/TNNLS.2015.2503980
https://doi.org/10.1109/TNNLS.2015.2503980
https://doi.org/10.1109/QEST.2004.1348037
https://doi.org/10.1109/QEST.2004.1348037
https://doi.org/10.1109/QEST.2004.1348037
https://doi.org/10.1007/978-3-642-28540-0_20
https://doi.org/10.1007/978-3-642-28540-0%5C_20
https://doi.org/10.1007/978-3-642-28540-0%5C_20
https://doi.org/10.1007/3-540-48320-9_12
https://doi.org/10.1007/3-540-48320-9%5C_12
https://doi.org/10.1007/3-540-48320-9%5C_12
https://doi.org/10.1145/2629599
https://doi.org/10.1145/2629599
https://doi.org/10.1145/2629599
https://doi.org/10.1007/978-3-662-44584-6_13
https://doi.org/10.1007/978-3-662-44584-6%5C_13
https://doi.org/10.1007/978-3-662-44584-6%5C_13
https://doi.org/10.1016/j.ic.2017.09.010
https://doi.org/10.1016/j.ic.2017.09.010

Bibliography

[Bog+11] Jonathan Bogdoll, Luis Marı́a Ferrer Fioriti, Arnd Hartmanns and Holger Her-
manns. ‘Partial Order Methods for Statistical Model Checking and Simulation’.
In: Formal Techniques for Distributed Systems - Joint 13th IFIP WG 6.1 In-
ternational Conference, FMOODS 2011, and 31st IFIP WG 6.1 International
Conference, FORTE 2011, Reykjavik, Iceland, June 6-9, 2011. Proceedings. Ed.
by Roberto Bruni and Jürgen Dingel. Vol. 6722. Lecture Notes in Computer
Science. Springer, 2011, pp. 59–74. doi: 10.1007/978-3-642-21461-5_4.
url: https://doi.org/10.1007/978-3-642-21461-5%5C_4.

[Boh+14] Dimitri Bohlender, Harold Bruintjes, Sebastian Junges, Jens Katelaan, Viet
Yen Nguyen and Thomas Noll. ‘A Review of Statistical Model Checking
Pitfalls on Real-Time Stochastic Models’. In: Leveraging Applications of
Formal Methods, Verification and Validation. Specialized Techniques and
Applications - 6th International Symposium, ISoLA 2014, Imperial, Corfu,
Greece, October 8-11, 2014, Proceedings, Part II. Ed. by Tiziana Margaria and
Bernhard Steffen. Vol. 8803. Lecture Notes in Computer Science. Springer,
2014, pp. 177–192. doi: 10.1007/978-3-662-45231-8_13. url: https:
//doi.org/10.1007/978-3-662-45231-8%5C_13.

[Bøn+19] Frederik M. Bønneland, Peter Gjøl Jensen, Kim G. Larsen, Marco Muñiz
and Jirı́ Srba. ‘Partial Order Reduction for Reachability Games’. In: 30th
International Conference on Concurrency Theory, CONCUR 2019, August
27-30, 2019, Amsterdam, the Netherlands. Ed. by Wan Fokkink and Rob
van Glabbeek. Vol. 140. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019, 23:1–23:15. doi: 10.4230/LIPIcs.CONCUR.2019.23. url:
https://doi.org/10.4230/LIPIcs.CONCUR.2019.23.

[Boy+13] Benoı̂t Boyer, Kevin Corre, Axel Legay and Sean Sedwards. ‘PLASMA-lab: A
Flexible, Distributable Statistical Model Checking Library’. In: Quantitative
Evaluation of Systems - 10th International Conference, QEST 2013, Buenos
Aires, Argentina, August 27-30, 2013. Proceedings. Ed. by Kaustubh R. Joshi,
Markus Siegle, Mariëlle Stoelinga and Pedro R. D’Argenio. Vol. 8054. Lecture
Notes in Computer Science. Springer, 2013, pp. 160–164. doi: 10.1007/978-
3-642-40196-1_12. url: https://doi.org/10.1007/978-3-642-40196-
1%5C_12.

[Boz+19] Alper Kamil Bozkurt, Yu Wang, Michael M. Zavlanos and Miroslav Pajic.
‘Control Synthesis from Linear Temporal Logic Specifications using Model-
Free Reinforcement Learning’. In: CoRR abs/1909.07299 (2019). arXiv: 1909.
07299. url: http://arxiv.org/abs/1909.07299.

[Brá+14] Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt,
Jan Kretı́nský, Marta Z. Kwiatkowska, David Parker and Mateusz Ujma.
‘Verification of Markov Decision Processes Using Learning Algorithms’. In:
Automated Technology for Verification and Analysis - 12th International
Symposium, ATVA 2014, Sydney, NSW, Australia, November 3-7, 2014,

76

https://doi.org/10.1007/978-3-642-21461-5_4
https://doi.org/10.1007/978-3-642-21461-5%5C_4
https://doi.org/10.1007/978-3-662-45231-8_13
https://doi.org/10.1007/978-3-662-45231-8%5C_13
https://doi.org/10.1007/978-3-662-45231-8%5C_13
https://doi.org/10.4230/LIPIcs.CONCUR.2019.23
https://doi.org/10.4230/LIPIcs.CONCUR.2019.23
https://doi.org/10.1007/978-3-642-40196-1_12
https://doi.org/10.1007/978-3-642-40196-1_12
https://doi.org/10.1007/978-3-642-40196-1%5C_12
https://doi.org/10.1007/978-3-642-40196-1%5C_12
https://arxiv.org/abs/1909.07299
https://arxiv.org/abs/1909.07299
http://arxiv.org/abs/1909.07299

Bibliography

Proceedings. Ed. by Franck Cassez and Jean-François Raskin. Vol. 8837.
Lecture Notes in Computer Science. Springer, 2014, pp. 98–114. doi: 10.
1007/978-3-319-11936-6_8. url: https://doi.org/10.1007/978-3-
319-11936-6%5C_8.

[Bry86] Randal E. Bryant. ‘Graph-Based Algorithms for Boolean Function Manipula-
tion’. In: IEEE Trans. Computers 35.8 (1986), pp. 677–691. doi: 10.1109/
TC.1986.1676819. url: https://doi.org/10.1109/TC.1986.1676819.

[Bud+17] Carlos E. Budde, Christian Dehnert, Ernst Moritz Hahn, Arnd Hartmanns,
Sebastian Junges and Andrea Turrini. ‘JANI: Quantitative Model and Tool
Interaction’. In: Tools and Algorithms for the Construction and Analysis of
Systems - 23rd International Conference, TACAS 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II. Ed. by
Axel Legay and Tiziana Margaria. Vol. 10206. Lecture Notes in Computer
Science. 2017, pp. 151–168. doi: 10.1007/978-3-662-54580-5_9. url:
https://doi.org/10.1007/978-3-662-54580-5%5C_9.

[Bud+18] Carlos E. Budde, Pedro R. D’Argenio, Arnd Hartmanns and Sean Sedwards.
‘A Statistical Model Checker for Nondeterminism and Rare Events’. In:
Tools and Algorithms for the Construction and Analysis of Systems - 24th
International Conference, TACAS 2018, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings, Part II. Ed. by Dirk Beyer and
Marieke Huisman. Vol. 10806. Lecture Notes in Computer Science. Springer,
2018, pp. 340–358. doi: 10.1007/978-3-319-89963-3_20. url: https:
//doi.org/10.1007/978-3-319-89963-3%5C_20.

[Bul+12] Peter E. Bulychev, Alexandre David, Kim Guldstrand Larsen, Marius Miku-
cionis, Danny Bøgsted Poulsen, Axel Legay and Zheng Wang. ‘UPPAAL-SMC:
Statistical Model Checking for Priced Timed Automata’. In: Proceedings 10th
Workshop on Quantitative Aspects of Programming Languages and Systems,
QAPL 2012, Tallinn, Estonia, 31 March and 1 April 2012. Ed. by Her-
bert Wiklicky and Mieke Massink. Vol. 85. EPTCS. 2012, pp. 1–16. doi:
10.4204/EPTCS.85.1. url: https://doi.org/10.4204/EPTCS.85.1.

[Cai+10] Benoı̂t Caillaud, Benoı̂t Delahaye, Kim G. Larsen, Axel Legay, Mikkel L.
Pedersen and Andrzej Wasowski. ‘Compositional Design Methodology with
Constraint Markov Chains’. In: QEST 2010, Seventh International Conference
on the Quantitative Evaluation of Systems, Williamsburg, Virginia, USA,
15-18 September 2010. IEEE Computer Society, 2010, pp. 123–132. doi:
10.1109/QEST.2010.23. url: https://doi.org/10.1109/QEST.2010.23.

[CCD15] Krishnendu Chatterjee, Martin Chmelik and Przemyslaw Daca. ‘CEGAR for
compositional analysis of qualitative properties in Markov decision processes’.
In: Formal Methods Syst. Des. 47.2 (2015), pp. 230–264. doi: 10.1007/

77

https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6%5C_8
https://doi.org/10.1007/978-3-319-11936-6%5C_8
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5%5C_9
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-319-89963-3%5C_20
https://doi.org/10.1007/978-3-319-89963-3%5C_20
https://doi.org/10.4204/EPTCS.85.1
https://doi.org/10.4204/EPTCS.85.1
https://doi.org/10.1109/QEST.2010.23
https://doi.org/10.1109/QEST.2010.23
https://doi.org/10.1007/s10703-015-0235-2
https://doi.org/10.1007/s10703-015-0235-2

Bibliography

s10703-015-0235-2. url: https://doi.org/10.1007/s10703-015-0235-
2.

[CH11] Krishnendu Chatterjee and Monika Henzinger. ‘Faster and Dynamic Al-
gorithms for Maximal End-Component Decomposition and Related Graph
Problems in Probabilistic Verification’. In: Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San
Francisco, California, USA, January 23-25, 2011. Ed. by Dana Randall.
SIAM, 2011, pp. 1318–1336. doi: 10.1137/1.9781611973082.101. url:
https://doi.org/10.1137/1.9781611973082.101.

[CH12] Krishnendu Chatterjee and Monika Henzinger. ‘An O(n2) time algorithm
for alternating Büchi games’. In: Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012. Ed. by Yuval Rabani. SIAM, 2012, pp. 1386–1399.
doi: 10.1137/1.9781611973099.109. url: https://doi.org/10.1137/1.
9781611973099.109.

[CH14] Krishnendu Chatterjee and Monika Henzinger. ‘Efficient and Dynamic Al-
gorithms for Alternating Büchi Games and Maximal End-Component De-
composition’. In: J. ACM 61.3 (2014), 15:1–15:40. doi: 10.1145/2597631.
url: https://doi.org/10.1145/2597631.

[Cha+13] Hyeong Soo Chang, Jiaqiao Hu, Michael C Fu and Steven I Marcus. Simulation-
based algorithms for Markov decision processes. Springer Science & Business
Media, 2013.

[Cie+08] Frank Ciesinski, Christel Baier, Marcus Größer and Joachim Klein. ‘Reduc-
tion Techniques for Model Checking Markov Decision Processes’. In: Fifth
International Conference on the Quantitative Evaluaiton of Systems (QEST
2008), 14-17 September 2008, Saint-Malo, France. IEEE Computer Society,
2008, pp. 45–54. doi: 10.1109/QEST.2008.45. url: https://doi.org/10.
1109/QEST.2008.45.

[CY90] Costas Courcoubetis and Mihalis Yannakakis. ‘Markov decision processes and
regular events’. In: Automata, Languages and Programming. Ed. by Michael S.
Paterson. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp. 336–349.
isbn: 978-3-540-47159-2.

[CY95] Costas Courcoubetis and Mihalis Yannakakis. ‘The Complexity of Probab-
ilistic Verification’. In: J. ACM 42.4 (1995), pp. 857–907. doi: 10.1145/
210332.210339. url: https://doi.org/10.1145/210332.210339.

[DAr+02] Pedro R. D’Argenio, Bertrand Jeannet, Henrik Ejersbo Jensen and Kim
Guldstrand Larsen. ‘Reduction and Refinement Strategies for Probabilistic
Analysis’. In: Process Algebra and Probabilistic Methods, Performance Model-
ing and Verification, Second Joint International Workshop PAPM-PROBMIV
2002, Copenhagen, Denmark, July 25-26, 2002, Proceedings. Ed. by Holger

78

https://doi.org/10.1007/s10703-015-0235-2
https://doi.org/10.1007/s10703-015-0235-2
https://doi.org/10.1007/s10703-015-0235-2
https://doi.org/10.1007/s10703-015-0235-2
https://doi.org/10.1007/s10703-015-0235-2
https://doi.org/10.1137/1.9781611973082.101
https://doi.org/10.1137/1.9781611973082.101
https://doi.org/10.1137/1.9781611973099.109
https://doi.org/10.1137/1.9781611973099.109
https://doi.org/10.1137/1.9781611973099.109
https://doi.org/10.1145/2597631
https://doi.org/10.1145/2597631
https://doi.org/10.1109/QEST.2008.45
https://doi.org/10.1109/QEST.2008.45
https://doi.org/10.1109/QEST.2008.45
https://doi.org/10.1145/210332.210339
https://doi.org/10.1145/210332.210339
https://doi.org/10.1145/210332.210339

Bibliography

Hermanns and Roberto Segala. Vol. 2399. Lecture Notes in Computer Sci-
ence. Springer, 2002, pp. 57–76. doi: 10.1007/3-540-45605-8_5. url:
https://doi.org/10.1007/3-540-45605-8%5C_5.

[DAr+15] Pedro D’Argenio, Axel Legay, Sean Sedwards and Louis-Marie Traonouez.
‘Smart sampling for lightweight verification of Markov decision processes’.
In: Int. J. Softw. Tools Technol. Transf. 17.4 (2015), pp. 469–484. doi:
10.1007/s10009-015-0383-0. url: https://doi.org/10.1007/s10009-
015-0383-0.

[Dav+11a] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, Danny
Bøgsted Poulsen, Jonas van Vliet and Zheng Wang. ‘Statistical Model Check-
ing for Networks of Priced Timed Automata’. In: Formal Modeling and
Analysis of Timed Systems - 9th International Conference, FORMATS 2011,
Aalborg, Denmark, September 21-23, 2011. Proceedings. Ed. by Uli Fahren-
berg and Stavros Tripakis. Vol. 6919. Lecture Notes in Computer Science.
Springer, 2011, pp. 80–96. doi: 10.1007/978-3-642-24310-3_7. url:
https://doi.org/10.1007/978-3-642-24310-3%5C_7.

[Dav+11b] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis and Zheng
Wang. ‘Time for Statistical Model Checking of Real-Time Systems’. In: Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan
and Shaz Qadeer. Vol. 6806. Lecture Notes in Computer Science. Springer,
2011, pp. 349–355. doi: 10.1007/978-3-642-22110-1_27. url: https:
//doi.org/10.1007/978-3-642-22110-1%5C_27.

[Dav+15] Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marius Miku-
cionis and Jakob Haahr Taankvist. ‘Uppaal Stratego’. In: Tools and Algorithms
for the Construction and Analysis of Systems - 21st International Conference,
TACAS 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings. Ed. by Christel Baier and Cesare Tinelli. Vol. 9035. Lecture
Notes in Computer Science. Springer, 2015, pp. 206–211. doi: 10.1007/978-
3-662-46681-0_16. url: https://doi.org/10.1007/978-3-662-46681-
0%5C_16.

[De 97] Luca De Alfaro. Formal verification of probabilistic systems. 1601. Citeseer,
1997.

[Deh+17] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen and Matthias Volk.
‘A Storm is Coming: A Modern Probabilistic Model Checker’. In: Computer
Aided Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part II. Ed. by Rupak Majumdar
and Viktor Kuncak. Vol. 10427. Lecture Notes in Computer Science. Springer,
2017, pp. 592–600. doi: 10.1007/978-3-319-63390-9_31. url: https:
//doi.org/10.1007/978-3-319-63390-9%5C_31.

79

https://doi.org/10.1007/3-540-45605-8_5
https://doi.org/10.1007/3-540-45605-8%5C_5
https://doi.org/10.1007/s10009-015-0383-0
https://doi.org/10.1007/s10009-015-0383-0
https://doi.org/10.1007/s10009-015-0383-0
https://doi.org/10.1007/978-3-642-24310-3_7
https://doi.org/10.1007/978-3-642-24310-3%5C_7
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-642-22110-1%5C_27
https://doi.org/10.1007/978-3-642-22110-1%5C_27
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0%5C_16
https://doi.org/10.1007/978-3-662-46681-0%5C_16
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9%5C_31
https://doi.org/10.1007/978-3-319-63390-9%5C_31

Bibliography

[DH13] Yuxin Deng and Matthew Hennessy. ‘Compositional reasoning for weighted
Markov decision processes’. In: Sci. Comput. Program. 78.12 (2013), pp. 2537–
2579. doi: 10.1016/j.scico.2013.02.009. url: https://doi.org/10.
1016/j.scico.2013.02.009.

[DHS18] Pedro R. D’Argenio, Arnd Hartmanns and Sean Sedwards. ‘Lightweight
Statistical Model Checking in Nondeterministic Continuous Time’. In: Lever-
aging Applications of Formal Methods, Verification and Validation. Veri-
fication - 8th International Symposium, ISoLA 2018, Limassol, Cyprus,
November 5-9, 2018, Proceedings, Part II. Ed. by Tiziana Margaria and
Bernhard Steffen. Vol. 11245. Lecture Notes in Computer Science. Springer,
2018, pp. 336–353. doi: 10.1007/978-3-030-03421-4_22. url: https:
//doi.org/10.1007/978-3-030-03421-4%5C_22.

[Dı́a+12] Álvaro Fernández Dı́az, Christel Baier, Clara Benac Earle and Lars-Åke
Fredlund. ‘Static Partial Order Reduction for Probabilistic Concurrent Sys-
tems’. In: Ninth International Conference on Quantitative Evaluation of
Systems, QEST 2012, London, United Kingdom, September 17-20, 2012.
IEEE Computer Society, 2012, pp. 104–113. doi: 10.1109/QEST.2012.22.
url: https://doi.org/10.1109/QEST.2012.22.

[FHM18] Chuchu Fan, Zhenqi Huang and Sayan Mitra. ‘Approximate Partial Order
Reduction’. In: Formal Methods - 22nd International Symposium, FM 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 15-17, 2018, Proceedings. Ed. by Klaus Havelund, Jan Peleska, Bill
Roscoe and Erik P. de Vink. Vol. 10951. Lecture Notes in Computer Science.
Springer, 2018, pp. 588–607. doi: 10.1007/978-3-319-95582-7_35. url:
https://doi.org/10.1007/978-3-319-95582-7%5C_35.

[FKP11] Lu Feng, Marta Z. Kwiatkowska and David Parker. ‘Automated Learning of
Probabilistic Assumptions for Compositional Reasoning’. In: Fundamental
Approaches to Software Engineering - 14th International Conference, FASE
2011, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011.
Proceedings. Ed. by Dimitra Giannakopoulou and Fernando Orejas. Vol. 6603.
Lecture Notes in Computer Science. Springer, 2011, pp. 2–17. doi: 10.1007/
978-3-642-19811-3_2. url: https://doi.org/10.1007/978-3-642-
19811-3%5C_2.

[FMY97] Masahiro Fujita, Patrick C. McGeer and Jerry Chih-Yuan Yang. ‘Multi-
Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix
Representation’. In: Formal Methods in System Design 10.2/3 (1997), pp. 149–
169. doi: 10.1023/A:1008647823331. url: https://doi.org/10.1023/A:
1008647823331.

[For+11] Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman and David Parker.
‘Automated Verification Techniques for Probabilistic Systems’. In: Formal

80

https://doi.org/10.1016/j.scico.2013.02.009
https://doi.org/10.1016/j.scico.2013.02.009
https://doi.org/10.1016/j.scico.2013.02.009
https://doi.org/10.1007/978-3-030-03421-4_22
https://doi.org/10.1007/978-3-030-03421-4%5C_22
https://doi.org/10.1007/978-3-030-03421-4%5C_22
https://doi.org/10.1109/QEST.2012.22
https://doi.org/10.1109/QEST.2012.22
https://doi.org/10.1007/978-3-319-95582-7_35
https://doi.org/10.1007/978-3-319-95582-7%5C_35
https://doi.org/10.1007/978-3-642-19811-3_2
https://doi.org/10.1007/978-3-642-19811-3_2
https://doi.org/10.1007/978-3-642-19811-3%5C_2
https://doi.org/10.1007/978-3-642-19811-3%5C_2
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1023/A:1008647823331

Bibliography

Methods for Eternal Networked Software Systems - 11th International School
on Formal Methods for the Design of Computer, Communication and Software
Systems, SFM 2011, Bertinoro, Italy, June 13-18, 2011. Advanced Lectures.
Ed. by Marco Bernardo and Valérie Issarny. Vol. 6659. Lecture Notes in
Computer Science. Springer, 2011, pp. 53–113. doi: 10.1007/978-3-642-
21455-4_3. url: https://doi.org/10.1007/978-3-642-21455-4%5C_3.

[FT14] Jie Fu and Ufuk Topcu. ‘Probably Approximately Correct MDP Learning
and Control With Temporal Logic Constraints’. In: Robotics: Science and
Systems X, University of California, Berkeley, USA, July 12-16, 2014. Ed. by
Dieter Fox, Lydia E. Kavraki and Hanna Kurniawati. 2014. doi: 10.15607/
RSS.2014.X.039. url: http://www.roboticsproceedings.org/rss10/
p39.html.

[FV96] Jerzy Filar and Koos Vrieze. ‘Competitive Markov decision processes’. In:
(1996).

[Hah+10] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter and Lijun Zhang.
‘PASS: Abstraction Refinement for Infinite Probabilistic Models’. In: Tools and
Algorithms for the Construction and Analysis of Systems, 16th International
Conference, TACAS 2010, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March
20-28, 2010. Proceedings. Ed. by Javier Esparza and Rupak Majumdar.
Vol. 6015. Lecture Notes in Computer Science. Springer, 2010, pp. 353–357.
doi: 10.1007/978-3-642-12002-2_30. url: https://doi.org/10.1007/
978-3-642-12002-2%5C_30.

[He+10] Ru He, Paul Jennings, Samik Basu, Arka P. Ghosh and Huaiqing Wu. ‘A
bounded statistical approach for model checking of unbounded until proper-
ties’. In: ASE 2010, 25th IEEE/ACM International Conference on Automated
Software Engineering, Antwerp, Belgium, September 20-24, 2010. Ed. by
Charles Pecheur, Jamie Andrews and Elisabetta Di Nitto. ACM, 2010, pp. 225–
234. doi: 10.1145/1858996.1859043. url: https://doi.org/10.1145/
1858996.1859043.

[Hen+12] David Henriques, João G. Martins, Paolo Zuliani, André Platzer and Edmund
M. Clarke. ‘Statistical Model Checking for Markov Decision Processes’. In:
Ninth International Conference on Quantitative Evaluation of Systems, QEST
2012, London, United Kingdom, September 17-20, 2012. IEEE Computer
Society, 2012, pp. 84–93. doi: 10.1109/QEST.2012.19. url: https://doi.
org/10.1109/QEST.2012.19.

[Hér+04] Thomas Hérault, Richard Lassaigne, Frédéric Magniette and Sylvain Peyron-
net. ‘Approximate Probabilistic Model Checking’. In: Verification, Model
Checking, and Abstract Interpretation, 5th International Conference, VMCAI
2004, Venice, Italy, January 11-13, 2004, Proceedings. Ed. by Bernhard
Steffen and Giorgio Levi. Vol. 2937. Lecture Notes in Computer Science.

81

https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4%5C_3
https://doi.org/10.15607/RSS.2014.X.039
https://doi.org/10.15607/RSS.2014.X.039
http://www.roboticsproceedings.org/rss10/p39.html
http://www.roboticsproceedings.org/rss10/p39.html
https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-642-12002-2%5C_30
https://doi.org/10.1007/978-3-642-12002-2%5C_30
https://doi.org/10.1145/1858996.1859043
https://doi.org/10.1145/1858996.1859043
https://doi.org/10.1145/1858996.1859043
https://doi.org/10.1109/QEST.2012.19
https://doi.org/10.1109/QEST.2012.19
https://doi.org/10.1109/QEST.2012.19

Bibliography

Springer, 2004, pp. 73–84. doi: 10.1007/978-3-540-24622-0_8. url:
https://doi.org/10.1007/978-3-540-24622-0%5C_8.

[HH14] Arnd Hartmanns and Holger Hermanns. ‘The Modest Toolset: An Integrated
Environment for Quantitative Modelling and Verification’. In: Tools and
Algorithms for the Construction and Analysis of Systems - 20th International
Conference, TACAS 2014, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014. Proceedings. Ed. by Erika Ábrahám and Klaus Havelund. Vol. 8413.
Lecture Notes in Computer Science. Springer, 2014, pp. 593–598. doi: 10.
1007/978-3-642-54862-8_51. url: https://doi.org/10.1007/978-3-
642-54862-8%5C_51.

[HKK13] Holger Hermanns, Jan Krcál and Jan Kretı́nský. ‘Compositional Verification
and Optimization of Interactive Markov Chains’. In: CONCUR 2013 - Con-
currency Theory - 24th International Conference, CONCUR 2013, Buenos
Aires, Argentina, August 27-30, 2013. Proceedings. Ed. by Pedro R. D’Argenio
and Hernán C. Melgratti. Vol. 8052. Lecture Notes in Computer Science.
Springer, 2013, pp. 364–379. doi: 10.1007/978-3-642-40184-8_26. url:
https://doi.org/10.1007/978-3-642-40184-8%5C_26.

[HM14] Serge Haddad and Benjamin Monmege. ‘Reachability in MDPs: Refining
Convergence of Value Iteration’. In: Reachability Problems - 8th International
Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Proceedings. Ed. by
Joël Ouaknine, Igor Potapov and James Worrell. Vol. 8762. Lecture Notes
in Computer Science. Springer, 2014, pp. 125–137. doi: 10.1007/978-3-
319-11439-2_10. url: https://doi.org/10.1007/978-3-319-11439-
2%5C_10.

[HM18] Serge Haddad and Benjamin Monmege. ‘Interval iteration algorithm for
MDPs and IMDPs’. In: Theor. Comput. Sci. 735 (2018), pp. 111–131. doi:
10.1016/j.tcs.2016.12.003. url: https://doi.org/10.1016/j.tcs.
2016.12.003.

[Hoe94] Wassily Hoeffding. ‘Probability inequalities for sums of bounded random
variables’. In: The Collected Works of Wassily Hoeffding. Springer, 1994,
pp. 409–426.

[How60] Ronald A Howard. ‘Dynamic programming and markov processes.’ In: (1960).

[HWZ08] Holger Hermanns, Björn Wachter and Lijun Zhang. ‘Probabilistic CEGAR’.
In: Computer Aided Verification, 20th International Conference, CAV 2008,
Princeton, NJ, USA, July 7-14, 2008, Proceedings. Ed. by Aarti Gupta
and Sharad Malik. Vol. 5123. Lecture Notes in Computer Science. Springer,
2008, pp. 162–175. doi: 10.1007/978-3-540-70545-1_16. url: https:
//doi.org/10.1007/978-3-540-70545-1%5C_16.

82

https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1007/978-3-540-24622-0%5C_8
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8%5C_51
https://doi.org/10.1007/978-3-642-54862-8%5C_51
https://doi.org/10.1007/978-3-642-40184-8_26
https://doi.org/10.1007/978-3-642-40184-8%5C_26
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1007/978-3-319-11439-2%5C_10
https://doi.org/10.1007/978-3-319-11439-2%5C_10
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-540-70545-1%5C_16
https://doi.org/10.1007/978-3-540-70545-1%5C_16

Bibliography

[JLS12] Cyrille Jégourel, Axel Legay and Sean Sedwards. ‘A Platform for High
Performance Statistical Model Checking - PLASMA’. In: Tools and Algorithms
for the Construction and Analysis of Systems - 18th International Conference,
TACAS 2012, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings. Ed. by Cormac Flanagan and Barbara König. Vol. 7214. Lecture
Notes in Computer Science. Springer, 2012, pp. 498–503. doi: 10.1007/978-
3-642-28756-5_37. url: https://doi.org/10.1007/978-3-642-28756-
5%5C_37.

[JLS13] Cyrille Jégourel, Axel Legay and Sean Sedwards. ‘Importance Splitting for
Statistical Model Checking Rare Properties’. In: Computer Aided Verification
- 25th International Conference, CAV 2013, Saint Petersburg, Russia, July
13-19, 2013. Proceedings. Ed. by Natasha Sharygina and Helmut Veith.
Vol. 8044. Lecture Notes in Computer Science. Springer, 2013, pp. 576–591.
doi: 10.1007/978-3-642-39799-8_38. url: https://doi.org/10.1007/
978-3-642-39799-8%5C_38.

[Jon+15] Austin Jones, Derya Aksaray, Zhaodan Kong, Mac Schwager and Calin Belta.
‘Robust Satisfaction of Temporal Logic Specifications via Reinforcement
Learning’. In: CoRR abs/1510.06460 (2015). arXiv: 1510.06460. url: http:
//arxiv.org/abs/1510.06460.

[Kar84] Narendra Karmarkar. ‘A new polynomial-time algorithm for linear program-
ming’. In: Combinatorica 4.4 (1984), pp. 373–396. doi: 10.1007/BF02579150.
url: https://doi.org/10.1007/BF02579150.

[Kat+10] Mark Kattenbelt, Marta Z. Kwiatkowska, Gethin Norman and David Parker.
‘A game-based abstraction-refinement framework for Markov decision pro-
cesses’. In: Formal Methods Syst. Des. 36.3 (2010), pp. 246–280. doi: 10.
1007/s10703-010-0097-6. url: https://doi.org/10.1007/s10703-010-
0097-6.

[KCC05] Stuart Kurkowski, Tracy Camp and Michael Colagrosso. ‘MANET simulation
studies: the incredibles’. In: Mobile Computing and Communications Review
9.4 (2005), pp. 50–61. doi: 10.1145/1096166.1096174. url: https://doi.
org/10.1145/1096166.1096174.

[Kel+18] Edon Kelmendi, Julia Krämer, Jan Kretı́nský and Maximilian Weininger.
‘Value Iteration for Simple Stochastic Games: Stopping Criterion and Learning
Algorithm’. In: Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part I. Ed. by Hana Chockler
and Georg Weissenbacher. Vol. 10981. Lecture Notes in Computer Science.
Springer, 2018, pp. 623–642. doi: 10.1007/978-3-319-96145-3_36. url:
https://doi.org/10.1007/978-3-319-96145-3%5C_36.

83

https://doi.org/10.1007/978-3-642-28756-5_37
https://doi.org/10.1007/978-3-642-28756-5_37
https://doi.org/10.1007/978-3-642-28756-5%5C_37
https://doi.org/10.1007/978-3-642-28756-5%5C_37
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-39799-8%5C_38
https://doi.org/10.1007/978-3-642-39799-8%5C_38
https://arxiv.org/abs/1510.06460
http://arxiv.org/abs/1510.06460
http://arxiv.org/abs/1510.06460
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/s10703-010-0097-6
https://doi.org/10.1007/s10703-010-0097-6
https://doi.org/10.1007/s10703-010-0097-6
https://doi.org/10.1007/s10703-010-0097-6
https://doi.org/10.1145/1096166.1096174
https://doi.org/10.1145/1096166.1096174
https://doi.org/10.1145/1096166.1096174
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/978-3-319-96145-3%5C_36

Bibliography

[Kha79] Leonid G Khachiyan. ‘A polynomial algorithm in linear programming’. In:
Doklady Academii Nauk SSSR. Vol. 244. 1979, pp. 1093–1096.

[Kle+16] Joachim Klein, Christel Baier, Philipp Chrszon, Marcus Daum, Clemens
Dubslaff, Sascha Klüppelholz, Steffen Märcker and David Müller. ‘Advances in
Symbolic Probabilistic Model Checking with PRISM’. In: Tools and Algorithms
for the Construction and Analysis of Systems - 22nd International Conference,
TACAS 2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April
2-8, 2016, Proceedings. Ed. by Marsha Chechik and Jean-François Raskin.
Vol. 9636. Lecture Notes in Computer Science. Springer, 2016, pp. 349–366.
doi: 10.1007/978-3-662-49674-9_20. url: https://doi.org/10.1007/
978-3-662-49674-9%5C_20.

[KM17] Jan Kretı́nský and Tobias Meggendorfer. ‘Efficient Strategy Iteration for
Mean Payoff in Markov Decision Processes’. In: Automated Technology for
Verification and Analysis - 15th International Symposium, ATVA 2017,
Pune, India, October 3-6, 2017, Proceedings. Ed. by Deepak D’Souza and
K. Narayan Kumar. Vol. 10482. Lecture Notes in Computer Science. Springer,
2017, pp. 380–399. doi: 10.1007/978-3-319-68167-2_25. url: https:
//doi.org/10.1007/978-3-319-68167-2%5C_25.

[KM19] Jan Kretı́nský and Tobias Meggendorfer. ‘Of Cores: A Partial-Exploration
Framework for Markov Decision Processes’. In: 30th International Conference
on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam,
the Netherlands. Ed. by Wan Fokkink and Rob van Glabbeek. Vol. 140.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 5:1–5:17.
doi: 10.4230/LIPIcs.CONCUR.2019.5. url: https://doi.org/10.4230/
LIPIcs.CONCUR.2019.5.

[KMN02] Michael J. Kearns, Yishay Mansour and Andrew Y. Ng. ‘A Sparse Sampling
Algorithm for Near-Optimal Planning in Large Markov Decision Processes’. In:
Machine Learning 49.2-3 (2002), pp. 193–208. doi: 10.1023/A:1017932429737.
url: https://doi.org/10.1023/A:1017932429737.

[KNP04] Marta Z. Kwiatkowska, Gethin Norman and David Parker. ‘Probabilistic
symbolic model checking with PRISM: a hybrid approach’. In: STTT 6.2
(2004), pp. 128–142. doi: 10 . 1007 / s10009 - 004 - 0140 - 2. url: https :
//doi.org/10.1007/s10009-004-0140-2.

[KNP11] Marta Z. Kwiatkowska, Gethin Norman and David Parker. ‘PRISM 4.0:
Verification of Probabilistic Real-Time Systems’. In: Computer Aided Verific-
ation - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan and Shaz Qadeer.
Vol. 6806. Lecture Notes in Computer Science. Springer, 2011, pp. 585–591.
doi: 10.1007/978-3-642-22110-1_47. url: https://doi.org/10.1007/
978-3-642-22110-1%5C_47.

84

https://doi.org/10.1007/978-3-662-49674-9_20
https://doi.org/10.1007/978-3-662-49674-9%5C_20
https://doi.org/10.1007/978-3-662-49674-9%5C_20
https://doi.org/10.1007/978-3-319-68167-2_25
https://doi.org/10.1007/978-3-319-68167-2%5C_25
https://doi.org/10.1007/978-3-319-68167-2%5C_25
https://doi.org/10.4230/LIPIcs.CONCUR.2019.5
https://doi.org/10.4230/LIPIcs.CONCUR.2019.5
https://doi.org/10.4230/LIPIcs.CONCUR.2019.5
https://doi.org/10.1023/A:1017932429737
https://doi.org/10.1023/A:1017932429737
https://doi.org/10.1007/s10009-004-0140-2
https://doi.org/10.1007/s10009-004-0140-2
https://doi.org/10.1007/s10009-004-0140-2
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1%5C_47
https://doi.org/10.1007/978-3-642-22110-1%5C_47

Bibliography

[KNP12] Marta Z. Kwiatkowska, Gethin Norman and David Parker. ‘The PRISM
Benchmark Suite’. In: Ninth International Conference on Quantitative Evalu-
ation of Systems, QEST 2012, London, United Kingdom, September 17-20,
2012. IEEE Computer Society, 2012, pp. 203–204. doi: 10.1109/QEST.2012.
14. url: https://doi.org/10.1109/QEST.2012.14.

[Kol+11] Andrey Kolobov, Mausam, Daniel S. Weld and Hector Geffner. ‘Heuristic
Search for Generalized Stochastic Shortest Path MDPs’. In: Proceedings of
the 21st International Conference on Automated Planning and Scheduling,
ICAPS 2011, Freiburg, Germany June 11-16, 2011. Ed. by Fahiem Bacchus,
Carmel Domshlak, Stefan Edelkamp and Malte Helmert. AAAI, 2011. url:
http://aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/view/2682.

[KS02] Michael J. Kearns and Satinder P. Singh. ‘Near-Optimal Reinforcement
Learning in Polynomial Time’. In: Machine Learning 49.2-3 (2002), pp. 209–
232. doi: 10.1023/A:1017984413808. url: https://doi.org/10.1023/A:
1017984413808.

[Lar13] Kim Guldstrand Larsen. ‘Priced Timed Automata and Statistical Model
Checking’. In: Integrated Formal Methods, 10th International Conference,
IFM 2013, Turku, Finland, June 10-14, 2013. Proceedings. Ed. by Einar Broch
Johnsen and Luigia Petre. Vol. 7940. Lecture Notes in Computer Science.
Springer, 2013, pp. 154–161. doi: 10.1007/978-3-642-38613-8_11. url:
https://doi.org/10.1007/978-3-642-38613-8%5C_11.

[LP15] Richard Lassaigne and Sylvain Peyronnet. ‘Approximate planning and verific-
ation for large Markov decision processes’. In: STTT 17.4 (2015), pp. 457–467.
doi: 10.1007/s10009-014-0344-z. url: https://doi.org/10.1007/
s10009-014-0344-z.

[LR85] Tze Leung Lai and Herbert Robbins. ‘Asymptotically efficient adaptive alloc-
ation rules’. In: Advances in applied mathematics 6.1 (1985), pp. 4–22.

[LST14] Axel Legay, Sean Sedwards and Louis-Marie Traonouez. ‘Scalable Verification
of Markov Decision Processes’. In: Software Engineering and Formal Methods -
SEFM 2014 Collocated Workshops: HOFM, SAFOME, OpenCert, MoKMaSD,
WS-FMDS, Grenoble, France, September 1-2, 2014, Revised Selected Papers.
Ed. by Carlos Canal and Akram Idani. Vol. 8938. Lecture Notes in Computer
Science. Springer, 2014, pp. 350–362. doi: 10.1007/978-3-319-15201-1_23.
url: https://doi.org/10.1007/978-3-319-15201-1%5C_23.

[MLG05] H. Brendan McMahan, Maxim Likhachev and Geoffrey J. Gordon. ‘Bounded
real-time dynamic programming: RTDP with monotone upper bounds and
performance guarantees’. In: Machine Learning, Proceedings of the Twenty-
Second International Conference (ICML 2005), Bonn, Germany, August 7-11,
2005. Ed. by Luc De Raedt and Stefan Wrobel. Vol. 119. ACM International
Conference Proceeding Series. ACM, 2005, pp. 569–576. doi: 10.1145/
1102351.1102423. url: https://doi.org/10.1145/1102351.1102423.

85

https://doi.org/10.1109/QEST.2012.14
https://doi.org/10.1109/QEST.2012.14
https://doi.org/10.1109/QEST.2012.14
http://aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/view/2682
https://doi.org/10.1023/A:1017984413808
https://doi.org/10.1023/A:1017984413808
https://doi.org/10.1023/A:1017984413808
https://doi.org/10.1007/978-3-642-38613-8_11
https://doi.org/10.1007/978-3-642-38613-8%5C_11
https://doi.org/10.1007/s10009-014-0344-z
https://doi.org/10.1007/s10009-014-0344-z
https://doi.org/10.1007/s10009-014-0344-z
https://doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1007/978-3-319-15201-1%5C_23
https://doi.org/10.1145/1102351.1102423
https://doi.org/10.1145/1102351.1102423
https://doi.org/10.1145/1102351.1102423

Bibliography

[PGT03] Joelle Pineau, Geoffrey J. Gordon and Sebastian Thrun. ‘Point-based value it-
eration: An anytime algorithm for POMDPs’. In: IJCAI-03, Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence, Acapulco,
Mexico, August 9-15, 2003. Ed. by Georg Gottlob and Toby Walsh. Morgan
Kaufmann, 2003, pp. 1025–1032. url: http://ijcai.org/Proceedings/
03/Papers/147.pdf.

[Pnu77] Amir Pnueli. ‘The Temporal Logic of Programs’. In: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977. IEEE Computer Society, 1977, pp. 46–57. doi:
10.1109/SFCS.1977.32. url: https://doi.org/10.1109/SFCS.1977.32.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley Series in Probability and Statistics. Wiley, 1994. isbn:
978-0-47161977-2. doi: 10.1002/9780470316887. url: https://doi.org/
10.1002/9780470316887.

[QK18] Tim Quatmann and Joost-Pieter Katoen. ‘Sound Value Iteration’. In: Com-
puter Aided Verification - 30th International Conference, CAV 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part I. Ed. by Hana Chockler and Georg Weissenbacher.
Vol. 10981. Lecture Notes in Computer Science. Springer, 2018, pp. 643–661.
doi: 10.1007/978-3-319-96145-3_37. url: https://doi.org/10.1007/
978-3-319-96145-3%5C_37.

[Roo+17] Nima Roohi, Yu Wang, Matthew West, Geir E. Dullerud and Mahesh
Viswanathan. ‘Statistical Verification of the Toyota Powertrain Control Veri-
fication Benchmark’. In: Proceedings of the 20th International Conference
on Hybrid Systems: Computation and Control, HSCC 2017, Pittsburgh, PA,
USA, April 18-20, 2017. Ed. by Goran Frehse and Sayan Mitra. ACM, 2017,
pp. 65–70. doi: 10.1145/3049797.3049804. url: https://doi.org/10.
1145/3049797.3049804.

[RP09] Diana El Rabih and Nihal Pekergin. ‘Statistical Model Checking Using
Perfect Simulation’. In: Automated Technology for Verification and Analysis,
7th International Symposium, ATVA 2009, Macao, China, October 14-16,
2009. Proceedings. Ed. by Zhiming Liu and Anders P. Ravn. Vol. 5799. Lecture
Notes in Computer Science. Springer, 2009, pp. 120–134. doi: 10.1007/978-
3-642-04761-9_11. url: https://doi.org/10.1007/978-3-642-04761-
9%5C_11.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an intro-
duction. Adaptive computation and machine learning. MIT Press, 1998. isbn:
978-0-262-19398-6. url: http://www.worldcat.org/oclc/37293240.

[Sch99] Alexander Schrijver. Theory of linear and integer programming. Wiley-
Interscience series in discrete mathematics and optimization. Wiley, 1999.
isbn: 978-0-471-98232-6.

86

http://ijcai.org/Proceedings/03/Papers/147.pdf
http://ijcai.org/Proceedings/03/Papers/147.pdf
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-319-96145-3%5C_37
https://doi.org/10.1007/978-3-319-96145-3%5C_37
https://doi.org/10.1145/3049797.3049804
https://doi.org/10.1145/3049797.3049804
https://doi.org/10.1145/3049797.3049804
https://doi.org/10.1007/978-3-642-04761-9_11
https://doi.org/10.1007/978-3-642-04761-9_11
https://doi.org/10.1007/978-3-642-04761-9%5C_11
https://doi.org/10.1007/978-3-642-04761-9%5C_11
http://www.worldcat.org/oclc/37293240

Bibliography

[Seg96] Roberto Segala. ‘Modeling and verification of randomized distributed real-
time systems’. In: (1996).

[SLL09] Alexander L. Strehl, Lihong Li and Michael L. Littman. ‘Reinforcement
Learning in Finite MDPs: PAC Analysis’. In: J. Mach. Learn. Res. 10 (2009),
pp. 2413–2444. url: https://dl.acm.org/citation.cfm?id=1755867.

[Str+06] Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford and Michael L.
Littman. ‘PAC model-free reinforcement learning’. In: Machine Learning,
Proceedings of the Twenty-Third International Conference (ICML 2006),
Pittsburgh, Pennsylvania, USA, June 25-29, 2006. Ed. by William W. Cohen
and Andrew Moore. Vol. 148. ACM International Conference Proceeding
Series. ACM, 2006, pp. 881–888. doi: 10.1145/1143844.1143955. url:
https://doi.org/10.1145/1143844.1143955.

[Str08] Alexander L. Strehl. ‘Probably Approximately Correct (PAC) Exploration
in Reinforcement Learning’. In: International Symposium on Artificial In-
telligence and Mathematics, ISAIM 2008, Fort Lauderdale, Florida, USA,
January 2-4, 2008. 2008. url: http://isaim2008.unl.edu/PAPERS/SS3-
ActiveLearning/isaim08-alex-strehl.pdf.

[SVA04] Koushik Sen, Mahesh Viswanathan and Gul Agha. ‘Statistical Model Checking
of Black-Box Probabilistic Systems’. In: Computer Aided Verification, 16th
International Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004,
Proceedings. Ed. by Rajeev Alur and Doron A. Peled. Vol. 3114. Lecture
Notes in Computer Science. Springer, 2004, pp. 202–215. doi: 10.1007/978-
3-540-27813-9_16. url: https://doi.org/10.1007/978-3-540-27813-
9%5C_16.

[SVA05a] Koushik Sen, Mahesh Viswanathan and Gul Agha. ‘On Statistical Model
Checking of Stochastic Systems’. In: Computer Aided Verification, 17th Inter-
national Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005,
Proceedings. Ed. by Kousha Etessami and Sriram K. Rajamani. Vol. 3576.
Lecture Notes in Computer Science. Springer, 2005, pp. 266–280. doi: 10.
1007/11513988_26. url: https://doi.org/10.1007/11513988%5C_26.

[SVA05b] Koushik Sen, Mahesh Viswanathan and Gul A. Agha. ‘VESTA: A Statistical
Model-checker and Analyzer for Probabilistic Systems’. In: Second Interna-
tional Conference on the Quantitative Evaluaiton of Systems (QEST 2005),
19-22 September 2005, Torino, Italy. IEEE Computer Society, 2005, pp. 251–
252. doi: 10.1109/QEST.2005.42. url: https://doi.org/10.1109/QEST.
2005.42.

[Sze10] Csaba Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lec-
tures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2010. doi: 10.2200/S00268ED1V01Y201005AIM009. url: https:
//doi.org/10.2200/S00268ED1V01Y201005AIM009.

87

https://dl.acm.org/citation.cfm?id=1755867
https://doi.org/10.1145/1143844.1143955
https://doi.org/10.1145/1143844.1143955
http://isaim2008.unl.edu/PAPERS/SS3-ActiveLearning/isaim08-alex-strehl.pdf
http://isaim2008.unl.edu/PAPERS/SS3-ActiveLearning/isaim08-alex-strehl.pdf
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9%5C_16
https://doi.org/10.1007/978-3-540-27813-9%5C_16
https://doi.org/10.1007/11513988_26
https://doi.org/10.1007/11513988_26
https://doi.org/10.1007/11513988%5C_26
https://doi.org/10.1109/QEST.2005.42
https://doi.org/10.1109/QEST.2005.42
https://doi.org/10.1109/QEST.2005.42
https://doi.org/10.2200/S00268ED1V01Y201005AIM009
https://doi.org/10.2200/S00268ED1V01Y201005AIM009
https://doi.org/10.2200/S00268ED1V01Y201005AIM009

Bibliography

[Tar72] Robert Endre Tarjan. ‘Depth-First Search and Linear Graph Algorithms’.
In: SIAM J. Comput. 1.2 (1972), pp. 146–160. doi: 10.1137/0201010. url:
https://doi.org/10.1137/0201010.

[Val84] Leslie G. Valiant. ‘A Theory of the Learnable’. In: Commun. ACM 27.11
(1984), pp. 1134–1142. doi: 10.1145/1968.1972. url: https://doi.org/
10.1145/1968.1972.

[WD92] Christopher JCH Watkins and Peter Dayan. ‘Q-learning’. In: Machine learning
8.3-4 (1992), pp. 279–292.

[Whi85] Douglas J White. ‘Real applications of Markov decision processes’. In: Inter-
faces 15.6 (1985), pp. 73–83.

[Whi88] Douglas J White. ‘Further real applications of Markov decision processes’. In:
Interfaces 18.5 (1988), pp. 55–61.

[Whi93] Douglas J White. ‘A survey of applications of Markov decision processes’. In:
Journal of the operational research society 44.11 (1993), pp. 1073–1096.

[Wim+10] Ralf Wimmer, Bettina Braitling, Bernd Becker, Ernst Moritz Hahn, Pepijn
Crouzen, Holger Hermanns, Abhishek Dhama and Oliver E. Theel. ‘Symblicit
Calculation of Long-Run Averages for Concurrent Probabilistic Systems’. In:
QEST 2010, Seventh International Conference on the Quantitative Evaluation
of Systems, Williamsburg, Virginia, USA, 15-18 September 2010. IEEE
Computer Society, 2010, pp. 27–36. doi: 10.1109/QEST.2010.12. url:
https://doi.org/10.1109/QEST.2010.12.

[YCZ10] Håkan L. S. Younes, Edmund M. Clarke and Paolo Zuliani. ‘Statistical
Verification of Probabilistic Properties with Unbounded Until’. In: Formal
Methods: Foundations and Applications - 13th Brazilian Symposium on
Formal Methods, SBMF 2010, Natal, Brazil, November 8-11, 2010, Revised
Selected Papers. Ed. by Jim Davies, Leila Silva and Adenilso da Silva Simão.
Vol. 6527. Lecture Notes in Computer Science. Springer, 2010, pp. 144–160.
doi: 10.1007/978-3-642-19829-8_10. url: https://doi.org/10.1007/
978-3-642-19829-8%5C_10.

[You05] Håkan L. S. Younes. ‘Ymer: A Statistical Model Checker’. In: Computer
Aided Verification, 17th International Conference, CAV 2005, Edinburgh,
Scotland, UK, July 6-10, 2005, Proceedings. Ed. by Kousha Etessami and
Sriram K. Rajamani. Vol. 3576. Lecture Notes in Computer Science. Springer,
2005, pp. 429–433. doi: 10.1007/11513988_43. url: https://doi.org/
10.1007/11513988%5C_43.

[YS02] Håkan L. S. Younes and Reid G. Simmons. ‘Probabilistic Verification of
Discrete Event Systems Using Acceptance Sampling’. In: Computer Aided
Verification, 14th International Conference, CAV 2002,Copenhagen, Denmark,
July 27-31, 2002, Proceedings. Ed. by Ed Brinksma and Kim Guldstrand
Larsen. Vol. 2404. Lecture Notes in Computer Science. Springer, 2002, pp. 223–

88

https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://doi.org/10.1109/QEST.2010.12
https://doi.org/10.1109/QEST.2010.12
https://doi.org/10.1007/978-3-642-19829-8_10
https://doi.org/10.1007/978-3-642-19829-8%5C_10
https://doi.org/10.1007/978-3-642-19829-8%5C_10
https://doi.org/10.1007/11513988_43
https://doi.org/10.1007/11513988%5C_43
https://doi.org/10.1007/11513988%5C_43

Bibliography

235. doi: 10.1007/3-540-45657-0_17. url: https://doi.org/10.1007/
3-540-45657-0%5C_17.

[ZSF12] Zahra Zamani, Scott Sanner and Cheng Fang. ‘Symbolic Dynamic Pro-
gramming for Continuous State and Action MDPs’. In: Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012,
Toronto, Ontario, Canada. Ed. by Jörg Hoffmann and Bart Selman. AAAI
Press, 2012. url: http://www.aaai.org/ocs/index.php/AAAI/AAAI12/
paper/view/5186.

89

https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0%5C_17
https://doi.org/10.1007/3-540-45657-0%5C_17
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5186
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5186

List of Figures

3.1 Example MDP where following the upper bounds is wrong. 20

4.1 Example MDP with an EC where Algorithm 2 does not converge. 23
4.2 Example of an MDP and its collapsed version. 23

5.1 Example MDP to explain the choices and interpretations of some constants. 33

90

List of Tables

7.1 Comparison of the BRTDP algorithm to both PRISM’s default reachability
computation and the previous implementation of [Brá+14]. 63

7.2 Evaluation of our BRTDP algorithm on several models from the PRISM
benchmark suite [KNP12]. 64

91

	Abstract
	Introduction
	Related Work
	Differences to the Published Article
	Contributions and Structure

	Preliminaries
	Markov Systems
	Reachability
	Probabilistic Learning Algorithms

	Complete Information – MDP without End Components
	The Ideas of Value Iteration
	The No-EC BRTDP Algorithm
	Proof of Correctness

	Complete Information – General Case
	Collapsing End Components
	The General BRTDP Algorithm
	Proof of Correctness
	Relation to Interval Iteration

	Limited Information – MDP without End Components
	Definition of Limited Information
	The No-EC DQL Algorithm
	Proof of Correctness

	Limited Information – General Case
	Collapsing End Components with Limited Information
	The General DQL Algorithm
	Proof of Correctness

	Experimental Evaluation
	Results

	Conclusion and Future Work
	Auxiliary Statements
	Bibliography
	List of Figures
	List of Tables

