Risk-Aware Stochastic Shortest Path

Tobias Meggendorfer

IST Austria

At a Glance

- Stochastic Shortest Path: Minimize cost to target region in stochastic environment
- Risk-Aware: Instead of expectation, consider risk measure
- Problem of this work ${ }^{(1)}$: Minimize conditional value-at-risk of total cost until target
- Two solutions (linear programming and value iteration)

Motivation - Control Mars Rover

- Risk assessment / aversion imperative to safety-critical systems
- Want both good average performance and little risk of failures
- Maximizing expectation not good enough
- Failure may occur with little probability \Rightarrow little impact on expectation
- High risk, high reward behaviour incentivized
- Completely avoiding bad behaviour (worst-case) neither
- Any reasonable model has some probability of complete failure
- Only really "safe" strategy: Do not move at all
- Thus: Consider probabilistic risk measure

The Conditional Value-at-Risk

			$\mathrm{VaR}_{40 \%}$	$\begin{gathered} \mathrm{CVaR}_{40 \%} \\ \end{gathered}$	
Costs	2	4	6	8	

- $\operatorname{VaR}_{p}(X)$ (the Value-at-Risk): "What is a reasonable bad case?" - $\operatorname{CVaR}_{p}(X)$: "What happens in the average bad case?"

Definition: Let X be a random variable and $p \in(0,1)$. Then

$$
\operatorname{VaR}_{p}(X):=\min \left\{v \in \mathbb{N}_{0} \mid \Sigma_{x=v+1}^{\infty} X(x) \leq t\right\} .
$$

With $v=\operatorname{VaR}_{p}(X)$ and $\mathfrak{V}:=\{X>v\}$:

$$
\operatorname{CVaR}_{p}(X):=\frac{1}{p}(\mathbb{P}[\mathfrak{V}] \cdot \mathbb{E}[X \mid \mathfrak{V}]+(p-\mathbb{P}[\mathfrak{V}]) \cdot v) .
$$

Interesting properties:

- Interpolation between worst-case $(p \rightarrow 0)$ and expectation $(p \rightarrow 1)$ - Robust to changes in X and p caused by, e.g., modelling errors
- Coherent risk measure

Model and Goal

Markov Decision Process (MDP)

- Standard Model for single actor in random environment
- Comprises: States, Actions, and Transition Probabilities
- Evolution: In state, choose action, draw successor from distribution

Stochastic Shortest Path (SSP)

- Additionally cost per action and target
- Goal: Minimize risk of total cost until target is reached

Example

- Action a preferred over b in expectation (2 vs. 4)
- But a is "risky" - significant chance to still be in s after e.g. 6 steps - The distributions:

- Action b preferred over a for CVaR with small enough p !

Difficulties

- VaR of optimal CVaR may be exponential
- Optimal policies may require exponential memory
- Trade-off between moving to target efficiently and "risky" actions

Solution Insight

- $\mathrm{CVaR} \hat{=} \mathrm{SSP}$ of worst p outcomes
- Assume VaR is n. At step n :
- $1-p$ probability mass reached target
- remaining p somewhere else in the system
$\Rightarrow \mathrm{CVaR}$ is weighted average of SSP for remaining part

Linear Programming

- Idea: Given "guess" for VaR, can find optimal strategies with LP - Try out all possible VaRs
- EXPTIME algorithm (exp. many LP of exp. size)

Value Iteration

- Trade-off problem \Rightarrow Pareto sets
- Define $\mathfrak{P}_{n}^{s} \subseteq[0,1] \times[0, \infty)$: contains (p, e) iff at step n (1) goal can be reached with prob. $\geq p$
(2) remaining expected time to reach goal $\leq e$
- Central results of the paper:
- Can derive achievable CVaR from \mathfrak{P}_{n}^{s}
- \mathfrak{P}_{n}^{s} is convex polygon
- \mathfrak{P}_{n+1}^{s} obtainable from combination of $\mathfrak{P}_{n}^{s^{\prime}}$
- Minkowski sum of convex polygons in 2D: PTIME - EXPTIME worst case, but comparatively fast in practice

