Should I Stay or Should I Go?

A Guide to Solving Stochastic Games with Value Iteration

Jan Křetínský1,2 Tobias Meggendorfer ${ }^{1,3}$ Maximilian Weininger ${ }^{1,3}$
${ }^{1}$ Technical University of Munich $\quad{ }^{2}$ Masaryk University $\quad{ }^{3}$ Institute of Science and Technology Austria

Stochastic Games
 The Setting

- Graph game between two players
s Maximizer and t Minimizer
- Each state has actions
- Actions have probabilistic outcomes
- Initially: Token on initial state
- Repeatedly: Player owning vertex with token chooses action, token moves according to probability

Value of the Game

Objectives

Assign a number to each play Examples:

- Reachability: 1 if reached state $\geqslant, 0$ otherwise - Safety: 1 if avoided state $\Phi, 0$ otherwise
- Total reward: Actions yield money ${ }^{2}$, get total income
- Mean payoff: Actions yield money ${ }^{=}$,
get average income per step

A Classical Solution Approach: Value Iteration

Step 1
Initialize lower and upper bounds for each state with surely correct values

$$
L(s) \leftarrow 0, U(s) \leftarrow 1
$$

Step 2
Update lower and upper estimates by playing optimally for one step

$$
L(s) \leftarrow \max _{a \in \operatorname{Act}(s)} \sum_{s^{\prime}} p(s, a)\left(s^{\prime}\right) \cdot L\left(s^{\prime}\right)
$$

Step 3
Repeat Step 2 until lower and upper bounds are close enough
$U(s)-L(s)<\varepsilon$

The Issue: Step 3 might never finish because of spurious fixpoints
This is known but unsolved in generality for nearly a decade!

A Modern Idea: Deflating and Inflating

In one sentence: VI only "sees" finite horizon
\Rightarrow Provide "infinite horizon" information: What happens if players stay forever?

Key Takeaway
When you are asked "Should I stay or should I go?" answer with staying values and best exits!

- Staying $\Rightarrow 0$ (not reaching goal)
- Using best exit $\mathrm{b} \Rightarrow \frac{2}{3}$, then $\frac{5}{9}$,

Solution: Deflate $U(s)$ to $\max \left\{0, \frac{2}{3}\right\}$

- Staying $\Rightarrow 1$ (avoiding sink)
- Using best exit $\mathrm{b} \Rightarrow \frac{1}{3}$, then $\frac{4}{9}, \ldots$

Solution: Inflate $L(s)$ to $\min \left\{1, \frac{1}{3}\right\}$

- Staying value non-trivial
- Both Inflate and Deflate

SOUND

Updates are correct
[Brá+14; HM14; Bai+17; Ash+17] (MDP)
[Kel+18; Pha+20] (SG)

UNIVERSAL

Reasoning is objective independent

COMPLETE

Updates ensures convergence
Your best exit?
Save the webpage and read the paper!

