Should I Stay or Should I Go?

Spoiler. A Guide to Solving Stochastic Games with Value Iteration

Jan Křetínský^{1,2} Tobias Meggendorfer^{1,3} Maximilian Weininger^{1,3}

¹Technical University of Munich ²Masaryk University ³Institute of Science and Technology Austria

Value of the Game

If both players play optimally, what will they get in expectation?

A Classical Solution Approach: Value Iteration

Step 1 Initialize lower and upper bounds for each state with surely correct values $L(s) \leftarrow 0, U(s) \leftarrow 1$

Step 2 Update lower and upper estimates by playing optimally for one step $L(s) \leftarrow \max_{a \in \mathsf{Act}(s)} \sum_{s'} p(s, a)(s') \cdot L(s')$

Step 3 Repeat Step 2 until lower and upper bounds are close enough $U(s) - L(s) < \varepsilon$

The Issue: Step 3 might never finish because of spurious fixpoints This is *known but unsolved* in generality for nearly a decade!

A Modern Idea: Deflating and Inflating

In one sentence: VI only "sees" finite horizon \Rightarrow Provide "infinite horizon" information: What happens if players stay *forever*?

• Staying \Rightarrow 0 (not reaching goal)

• Using best exit $b \Rightarrow \frac{2}{3}$, then $\frac{5}{9}$, ...

Solution: DEFLATE U(s) to max $\{0, \frac{2}{3}\}$

• Staying $\Rightarrow 1$ (avoiding sink) • Using best exit $b \Rightarrow \frac{1}{3}$, then $\frac{4}{9}$, ... Solution: INFLATE L(s) to $\min\{1, \frac{1}{3}\}$

