Stopping Criteria for Value Iteration on Stochastic Games with Quantitative Objectives

Jan Kretinsky, Tobias Meggendorfer, Maximilian Weininger

Institute of

Talk in one slide

- Probabilistic systems: Best algorithm (usually) is Value Iteration (VI)
- But: Requires a stopping criterion
 For Stochastic Games (SG) with most infinite-horizon, quantitative objectives there is none!

• This paper: **Uniform** solution for **large class of quantitative objectives** (including total reward, mean payoff, ...)

Talk in one slide

- Probabilistic systems: Best algorithm (usually) is Value Iteration (VI)
- But: Requires a stopping criterion for correctness
 For Stochastic Games (SG) with most infinite-horizon, quantitative
 objectives there is none!
 1-player SG: separate papers give

1-player SG: separate papers giving stopping criteria for each objective [BCC+14, HM14, BKL+17, ACD+17].

• This paper: **Uniform** solution for **large class of quantitative objectives** (including total reward, mean payoff, ...)

Talk in one slide

- Probabilistic systems: Best algorithm (usually) is Value Iteration (VI)
- But: Requires a stopping criterion for correctness
 For Stochastic Games (SG) with most infinite-horizon, quantitative
 objectives there is none!
 1-player SG: separate papers give

1-player SG: separate papers giving stopping criteria for each objective [BCC+14, HM14, BKL+17, ACD+17].

 This paper: Uniform solution for large class of quantitative objectives (including total reward, mean payoff, ...) Unifies all previous ones and is

more broadly applicable.

Stochastic Games

Stochastic Games

Iteration	L(s)	L(t)
0	0	0
1		
2		

Iteration	L(s)	L(t)
0	0	0
1		
2		

Iteration	L(s)	L(t)
0	0	0
1	0	
2		

Iteration	L(s)	L(t)
0	0	0
1	0	
2		

Iteration	L(s)	L(t)
0	0	0
1	0	1/3
2		

Iteration	L(s)	L(t)
0	0	0
1	0	1/3
2	1/3	

Iteration	L(s)	L(t)
0	0	0
1	0	1/3
2	1/3	4/9

Iteration	L(s)	L(t)
0	0	0
1	0	1/3
2	1/3	4/9

Iteration	L(s)	L(t)	U(s)	U(t)
0	0	0	1	1
1	0	1/3		
2	1/3	4/9		

Iteration	L(s)	L(t)	U(s)	U(t)
0	0	0	1	1
1	0	1/3	1	
2	1/3	4/9		

Iteration	L(s)	L(t)	U(s)	U(t)
0	0	0	1	1
1	0	1/3	1	1
2	1/3	4/9		

Iteration	L(s)	L(t)	U(s)	U(t)
0	0	0	1	1
1	0	1/3	1	1
2	1/3	4/9	1	1

Iteration	L(s)	L(t)	U(s)	U(t)
0	0	0	1	1
1	0	1/3	1	1
2	1/3	4/9	1	1

Iteration	L(s)	L(t)	U(s)	U(t)
0	0	0	1	1
1	0	1/3	1	2/3
2	1/3	4/9	2/3	5/9

Iteration	L(s)	L(t)	L(u)
0	0	0	1
1			
2			

Iteration	L(s)	L(t)	L(u)
0	0	0	1
1			1
2			1

Iteration	L(s)	L(t)	L(u)
0	0	0	1
1	0		1
2			1

Iteration	L(s)	L(t)	L(u)
0	0	0	1
1	0	0	1
2			1

Iteration	L(s)	L(t)	L(u)
0	0	0	1
1	0	0	1
2	0	0	1

Iteration	L(s)	L(t)	L(u)
0	0	0	1
1	0	0	1
2	0	0	1

Iteration	L(s)	L(t)	L(u)
0	0	0	1
1	0	1/3	1
2	1/3	4/9	1

Iteration	L(s)	L(t)	L(u)
0	0	0	1
1	0	1/3	1
2	1/3	4/9	1

Reachability:

stay=0

Safety:

stay=1

Reachability:

stay=0 max(stay,exit) = exit

Safety:

stay=1

Reachability:

stay=0 max(stay,exit) = exit

Safety:

stay=1

min(stay,exit) = exit

Reachability:

stay=0 max(stay,exit) = exit

min(stay,exit) = 0

Safety:

stay=1 max(stay,exit) = 1 min(stay,exit) = exit

And dually for Maximizer states

Inflate from 0 to stay value 5

• Idea: If opponent thinks staying here is good, what happens if we really do stay?

- Idea: If opponent thinks staying here is good, what happens if we really do stay?
- Thus: Fix opponent's strategy and analyse remaining cycles.

- Idea: If opponent thinks staying here is good, what happens if we really do stay?
- Thus: Fix opponent's strategy and analyse remaining cycles

- Idea: If opponent thinks staying here is good, what happens if we really do stay?
- Thus: Fix opponent's strategy and analyse remaining cycles

- Idea: If opponent thinks staying here is good, what happens if we really do stay?
- Thus: Fix opponent's strategy and analyse remaining cycles

Conclusion

- Given: Stochastic Games with quantitative objectives (including reachability, safety, mean payoff, expected total reward, ...),
- Goal: Solving them quickly and with precision-guarantees
- Approach: Value Iteration with our new stopping criterion

Idea: Inform the algorithm about the consequences of staying forever: Should I stay or should I go now?

Unifies previous work [BCC+14, HM14, BKL+17, ACD+17, KKKW18, PTHH20] in an **elegant, objective-independent way**