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Talk in one slide

Unifies all previous ones and is 
more broadly applicable.

1-player SG: separate papers giving 
stopping criteria for each objective 
[BCC+14, HM14, BKL+17, ACD+17].

● Probabilistic systems: Best algorithm (usually) is Value Iteration (VI)
● But: Requires a stopping criterion for correctness 

For Stochastic Games (SG) with most infinite-horizon, quantitative 
objectives there is none!

● This paper: Uniform solution for large class of quantitative objectives
(including total reward, mean payoff, …)
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Bellman update:
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Bellman update:

INflate

Inform the algorithm about the 
consequences of staying forever.
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Should I stay or should I go now?

Reachability:

stay=0 max(stay,exit) = exit

min(stay,exit) = 0

Safety: 

stay=1 max(stay,exit) = 1

min(stay,exit) = exit
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And dually for Maximizer states
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Where can I stay and go?

SOUND COMPLETE

OBJECTIVE-
INDEPENDENT

● Idea: If opponent thinks staying here is good,
  what happens if we really do stay?

● Thus: Fix opponent’s strategy and analyse remaining cycles



Conclusion
● Given: Stochastic Games with quantitative objectives 

(including reachability, safety, mean payoff, expected total reward, …),  
● Goal: Solving them quickly and with precision-guarantees
● Approach: Value Iteration with our new stopping criterion

Idea: Inform the algorithm about the consequences of staying forever:
Should I stay or should I go now?

Unifies previous work [BCC+14, HM14, BKL+17, ACD+17, KKKW18, PTHH20]
in an elegant, objective-independent way


